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a b s t r a c t 

The infectious disease known as COVID-19 has spread dramatically all over the world since December 2019. 
The fast diagnosis and isolation of infected patients are key factors in slowing down the spread of this virus and 
better management of the pandemic. Although the CT and X-ray modalities are commonly used for the diagnosis 
of COVID-19, identifying COVID-19 patients from medical images is a time-consuming and error-prone task. 
Artificial intelligence has shown to have great potential to speed up and optimize the prognosis and diagnosis 
process of COVID-19. Herein, we review publications on the application of deep learning (DL) techniques for 
diagnostics of patients with COVID-19 using CT and X-ray chest images for a period from January 2020 to 
October 2021. Our review focuses solely on peer-reviewed, well-documented articles. It provides a comprehensive 
summary of the technical details of models developed in these articles and discusses the challenges in the smart 
diagnosis of COVID-19 using DL techniques. Based on these challenges, it seems that the effectiveness of the 
developed models in clinical use needs to be further investigated. This review provides some recommendations 
to help researchers develop more accurate prediction models. 
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ist of Abbreviations 

bbreviation Definition 
cc Accuracy 
UC the Area Under the ROC Curve 
NN Convolutional neural network 
OVID-19 Coronavirus disease 2019 
T Computed Tomography 
L Deep Learning 
AN Generative Adversarial Network 
RAD-CAM Gradient-weighted Class Activation Mapping 
IS Hyperspectral Imaging 
RN Local Response Normalization 
US Lung Ultrasound 
ET Positron Emission Tomography 
re Precision 
esNet Residual Network 
OI Region of Interest 
T–PCR Reverse Transcriptase-Polymerase Chain Reaction 
ARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2 
EM Scanning Electron Microscopy 
en Sensitivity 
pe Specificity 
VM Support Vector Machine 
e Test 
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. Introduction 

In early December 2019, the first case of COVID-19, the disease
aused by the virus Severe Acute Respiratory Syndrome Coronavirus
 (SARS-CoV-2), was confirmed by the authorities in Wuhan, China.
OVID-19 developed rapidly into a global outbreak and spread all across
he world. The World Health Organization (WHO) described the out-
reak as a Public Health Emergency of International Concern on 30 Jan-
ary 2020 and declared it a pandemic on 11 March 2020. Globally, as
f 6:06pm CEST, 19 October 2022, there have been 623,000,396 con-
rmed cases of COVID-19, including 6550,033 deaths, reported to WHO
 https://covid19.who.int ). 

Although Reverse Transcriptase-Polymerase Chain Reaction (RT–
CR) is the gold standard for diagnosing COVID-19 [1] , the sensitiv-
ty of the test is relatively poor, and thus even in patients with a neg-
tive RT–PCR result, COVID-19 infection cannot be entirely excluded
 2 , 3 ]. Therefore, medical imaging, especially chest computed tomog-
aphy (CT) scan and X-ray, is often used to complement the RT–PCR
est to achieve more diagnostic certainty. These imaging techniques
ave a higher sensitivity than RT–PCR and play a critical role not only
ctober 2022 
hysics and Engineering in Medicine (IPEM). This is an open access article 
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n the early diagnosis and treatment of COVID-19 patients but also in
onitoring the progress of the disease [ 2 , 3 ]. However, the accuracy of
OVID-19 diagnosis using CT and X-ray chest images depends on ra-
iological expertise, and some radiologists may fail to interpret accu-
ately the results of these images, hence leading to reduced sensitivity
 4 , 5 ]. 

With recent advances in machine learning techniques, particularly
eep learning (DL), and the success of these techniques in medical im-
ge processing, scientists and clinicians hope to improve the accuracy of
OVID-19 diagnosis by applying deep learning methods to chest medical

mages. These methods have the potential in providing decision support
or clinicians and reducing medical errors. In a short period, we have
itnessed a large number of DL models developed for a very broad range
f COVID-19-related applications. The purpose of the present review is
o give more insight into deep learning applications in the diagnostics of
OVID-19. We survey the literature on diagnosing patients infected by
OVID-19 using DL techniques for a period from January 2020 to Octo-
er 2021. Herein, our main focus is on classification and segmentation
odels proposed based on CT and X-ray chest images. Our review only

ncludes peer-reviewed, well-documented articles and summarizes the
echnical details of models developed in these articles. We also discuss
he challenges of using deep learning for the smart diagnosis of COVID-
9. The challenges show that the performance of the models developed
n the reviewed articles is probably optimistic and these models are not
f potential for clinical use. We finally provide some recommendations
hat can help researchers develop more accurate and practical models
or the COVID-19 diagnosis. 

. Methods 

.1. Data sources and search strategy 

This search was intended to address the question: “What deep learn-
ng techniques have been developed for the COVID-19 diagnosis us-
ng CT and X-ray images? ”. For a period from January 2020 to Octo-
er 2021, we conducted systematic searches of the following on-line
atabases in order to identify relevant works: IEEE Xplore, ScienceDi-
ect, Springer, PubMed, and Google Scholar. 

.2. Search terms 

The keywords used for the literature search were “COVID-19; Coro-
avirus; Diagnosis; Detection; Artificial Intelligence; Machine Learning;
eep Learning; Medical Imaging; CT-Scan; X-ray.’’ They were connected
sing “and’’, or “or’’ to identify the articles that deal with the diagnosis
f COVID-19 using DL techniques on medical images. 

.3. Selection criteria 

The studies with the following criteria were included in the review:
1) Articles that employed machine learning or deep learning techniques
or the COVID-19 diagnosis, (2) Articles that utilized techniques to an-
lyze radiographic images (CT scan, and/or X-ray), (3) Articles that ap-
lied classification and segmentation models. 

The following exclusion criteria were used to eliminate studies from
onsideration: (1) Articles that were not in the English language, (2)
rticles that were not published in peer-reviewed journals, (3) Review
rticles, (4) Articles that did not use ML/DL approaches for diagnosing
OVID-19 based on medical images, (5) Articles that did not provide a
lear explanation of the implemented model and its results. 

. Technical background 

This review paper aims to survey different DL models developed
n the literature for the smart diagnosis of COVID-19 in people with
2 
uspected infection. We focus on classification and/or segmentation
echniques using CT and X-ray chest images. For this purpose, this sec-
ion briefly discusses various DL architectures applied in the reviewed
rticles. 

.1. Classification models 

In this section, the different deep neural networks for COVID-19 clas-
ification based on CT and X-ray chest images are discussed. 

Standard CNN . The architecture of convolutional neural networks
CNN) is inspired by human and animal brains. The main advantage
f CNN is detecting relevant features automatically and without any
uman supervision. CNN tries to overcome the overfitting problem by
sing convolutional layers. Fig. 1 depicts the architecture of standard
eep CNN. The different parts of this architecture are described below: 

• The convolutional layer is the main building block of a CNN and
applies a convolution operation to the input. 

• The pooling layer reduces the dimensions of the feature maps. 
• The fully connected layer is usually placed at the end of CNN archi-

tecture to do the classification task. 
• The loss function calculates the prediction error. Through network

learning, this value is optimized. 
• Various techniques such as dropout, batch normalization, and data

augmentation that are applied for better learning. 

AlexNet. AlexNet is one of the earliest and most widely cited deep
eural networks and a leading architecture for any object-detection task.
t first introduced two new concepts named Local Response Normaliza-
ion (LRN) and dropout to help the deep neural network learn better [7] .
s a normalization layer, LRN implements the idea of lateral inhibition.
ropout is one of the regularization approaches to avoid the overfitting
roblem. It randomly skips some neurons during training and forces
he other neurons in the layer to pick up the slack. The architecture of
lexNet is shown in Fig. 2 . 

SqueezeNet. SqueezeNet is a convolutional neural network that uti-
izes design strategies to reduce the number of weights and is consid-
red a more compact replacement for AlexNet [9] . On the ImageNet
ataset, it achieves accuracies comparable to AlexNet while perform-
ng 3x faster and containing up to 50x fewer parameters. ImageNet
 http://www.image-net.org ) is a large-scale hierarchical dataset of an-
otated images for computer vision and machine learning research
10] . Fig. 3 depicts a combined architecture of AlexNet, SqueezeNet,
oogleNet, and MobileNetV2. 

VGGNet. VGG is a classical CNN architecture. It consists of a few
onvolutional layers that apply the RELU activation function [7] . The
umber of convolution layers differs in various versions of VGG. A single
ax-pooling layer and three fully connected layers are placed following

hese activation layers, As shown in Fig. 4 . This architecture uses the
oftmax classifier. 

GoogleNet. GoogleNet, also called InceptionNet-V1, proposed the
ovel Inception blocks that improve recognition accuracy. The distinc-
ive features of this architecture (see Fig. 3 ) are the large convolution
asks, the less dimensional space, and reduced computational complex-

ty. GoogleNet is deeper with much fewer parameters compared to its
ncestors AlexNet and VGG [7] . 

MobileNet. The main characteristic of MobileNet (see Fig. 3 ) is us-
ng depth-wise separable convolution that consists of two layers named
epth-wise convolution and point-wise convolution. Using these layers,
obileNet provides an intensive reduction in model size and decreases

omputational cost by about 8–9 times compared to standard convolu-
ions. A RELU and batch normalization are placed after both of these
ayers. MobileNet is simple but efficient for mobile and embedded ma-
hine vision applications [13] . 

DenseNet . As a type of convolutional neural network, DenseNet uti-
izes dense connections between convolutional layers where each layer
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Fig. 1. A CNN model for COVID-19 Detection 
[6] . 

Fig. 2. AlexNet Architecture used for COVID-19 classification [8] . 
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s connected to every other layer. DenseNet was introduced to overcome
he issue of vanishing gradient. With effective usage of feature reuse,
he network parameters decrease dramatically [14] . Fig. 5 depicts the
rchitecture of a DenseNet network. 

ResNet. The core idea of the Residual network (ResNet) is introducing
 technique called skip connection (or Shortcut Connection) that skips
ome of the layers in the network and feeds the output of a layer as the
nput to later layers, as shown in Fig. 6 . There are different variants of
esNet architecture composed of a different number of layers. The most
opular type of ResNet network is ResNet50 including 49 convolutional
ayers followed by one fully connected layer [14] . 

EfficientNet. The EfficientNet network relies on a compound
caling method that uniformly scales all three dimensions of
epth/width/resolution while maintaining a balance between all net-
ork dimensions. using the compound scaling technique, the authors

caled the baseline network EfficientNet-B0 to get different varia-
ions including EfficientNet-B1 to B7. In comparison to squeeze-and-
xcitation networks, EfficientNet is 7.7 x smaller and 10 x faster [17] .
ig. 7 describes the architecture of an EfficientNet model proposed for
OVID-19 image classification. 

InceptionNet. An inception network is composed of repeating compo-
ents referred to as Inception modules. InceptionNet employs the idea of
uxiliary classifiers to address the gradient vanishing problem and im-
rove the convergence of very deep networks. It also applies different
onvolution kernels of various sizes in parallel. This architecture helps
3 
o extract similar features in different sizes simultaneously. The popular
ersions of InceptionNet are InceptionV1 to V3 (as shown in Fig. 8 ) and
nception-ResNet. 

.2. Segmentation models 

The most common deep learning model developed for image segmen-
ation, U-Net, has been widely utilized for lung region segmentation to
iagnose COVID-19 patients: 

U-NET. U-Net architecture is primarily designed for segmentation
pplications. Its good performance in segmenting medical images makes
t the primary tool for segmentation in this field. The U-Net architecture
s an almost symmetrical u-shape network that consists of two paths
alled decoder and encoder. It is much faster than other segmentation
etworks, because of its context-based learning [19] . The architecture
f U-Net is described in Fig. 9 . 

.3. Generative adversarial networks 

Generative Adversarial Network (GAN) is an unsupervised approach
nd a powerful method to produce unseen data samples with the same
tatistics as the training set. This way, it can overcome overfitting and
ata shortage problems and improve deep network performance. GAN
rchitecture (as shown in Fig. 10 ) is composed of two sub-models named
enerator model and discriminator model contesting each other in a
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Fig. 3. A combined architecture of AlexNet, SqueezeNet, GoogleNet, and MobileNetV2 for COVID-19 detection [11] . 

Fig. 4. The structure of VGG16 for COVID-19 
detection [12] . 
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ame. The generator model tries to generate new plausible images sim-
lar to real data. The discriminator model tries to distinguish between
eal and fake samples. This process continues until the generator sam-
les become close to the actual input samples [7] . 

. Results 

From all the databases considered for finding relevant works (see
ection 2.1 for more information), we identified 15,417 articles that
atisfied our search terms, of which, 6209 articles were preprints (not
eer-reviewed) and excluded from this review. For duplicate studies
157 articles), we ensured that the latest version of the article was con-
idered. The titles, abstracts, and full texts were screened for relevance
nd eligibility. We removed 8983 articles that were irrelevant or not
ocumented with enough detail to allow other researchers to reliably
4 
eproduce the results. Finally, our investigation retained 68 peer-
eviewed, well-documented articles for consideration in this review.
his section presents all the technical details of DL models developed

n these articles for COVID-19 diagnosis in summary and explains the
dvantages and disadvantages of the used techniques. Table 1 summa-
izes the reviewed articles and reports informative details for them. 

Generally, imaging modalities considered in COVID-19 diagnosis
re X-ray, Computed Tomography (CT), and ultrasound. Although ul-
rasound imaging is a more widely available, cost-effective, safe, and
eal-time imaging technique [22] , it has a relatively lower sensitivity
n comparison to chest CT-Scan [23] and cannot usually detect lesions
hat are deep and intrapulmonary [ 24 , 25 ]. Since more deep learning-
ased COVID-19 detection and segmentation works focus on CT and
-ray modalities, we only reviewed articles that have used these modal-

ties. The column Imaging Modality in the table indicates which imaging
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Table 1 

Summary of recent DL techniques for COVID-19 diagnosis. 

Refs. Modality Dataset 
# Cases per 
Class Test Method 

Validation 
Method 

Transfer 
Learning ML Approach Preprocessing Classification Segmentation DNN Classifier Postprocessing 

Performance 
Criteria (%) 

[67] X-ray Combination of 
Two Different 
DBs 

142 COVID-19, 
142 Normal 
Img. 

70%:30% Hold-out ImageNet Supervised Resizing, Data 
Augmentation 

COVID-19 from 

Non-COVID-19 
NA NCOVnet 

(Based on 
VGG-16) 

Softmax NA Acc = 97.62, 
Sen = 97.62, 
Spe = 78.57 

[68] X-ray Combination of 
Two Different 
DBs 

295 COVID-19, 
65 Normal, 98 
Pneumonia Img. 

70%:30% 5-fold NA Supervised Fuzzy Color 
Method, Image 
Stacking 
Technique 

COVID-19 from 

Other 
Pneumonia 

NA MobileNetV2, 
SqueezeNet 

SVM Social Mimic 
Optimization 
Method 

Acc = 99.27 

[69] X-ray Combination of 
Two Different 
DBs 

105 COVID-19, 
11 SARS, 80 
Normal Img. 

70%:30% Hold-out ImageNet Supervised Data 
Augmentation, 
Histogram, 
Feature Extraction 
using AlexNet, 
PCA, K-means 

COVID-19 from 

Other 
Pneumonia 

NA DeTraC (Based 
on ResNet18), 
AlexNet 
(Feature 
Extraction) 

Softmax Composition 
Phase 

Acc = 95.12, 
Sen = 97.91, 
Spe = 91.87 

[70] X-ray COVIDx 76 COVID-19, 
1583 Normal, 
4290 
Pneumonia Img. 

80%:10%:10% Hold-out NA Supervised Data 
Augmentation, 
RGB format, 
Normalizing 

COVID-19 from 

Other 
Pneumonia 

NA COVIDiag- 
nosis-Net 
(Based on 
Deep 
SqueezeNet 
with Bayes 
Optimization) 

Decision- 
Making 
System 

Class 
Activation 
Mapping 
Visualization 
(Heat Map) 

Acc = 98.3, 
Spe = 99.13, 
F1-Score = 98.3 

[71] X-ray Combination of 
Two Different 
DBs 

127 COVID-19, 
500 
No-Findings, 
500 Pneumonia 
Img. 

80%:20% 5- fold NA Supervised NA COVID-19 from 

Non-COVID-19 
NA DarkCovidNet 

(Based on 
CNN) 

Linear Heatmaps 
Visualization 

Acc = 98.08, 
Spe = 95.3, 
Sen = 95.13, 
Pre = 98.03, 
F1-Score = 96.51 

[72] X-ray RYDLS-20 90 COVID-19, 
10 MERS, 11 
SARS, 10 
Varicella, 12 
Streptococcus, 
11 Pneumocystis 
Img. 

70%:30% Hold-out ImageNet Supervised Different Features, 
Early Fusion, Late 
Fusion, Different 
Resampling 
Algorithms 

COVID-19 from 

Other 
Pneumonia 

NA Inception-V3 Clus-HMC 
Framework 

Friedman 
Statistical Test 
for Ranking 

F1-Score = 88.89 

( continued on next page ) 
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Table 1 ( continued ) 

Refs. Modality Dataset # Cases per 
Class 

Test Method Validation 
Method 

Transfer 
Learning 

ML Approach Preprocessing Classification Segmentation DNN Classifier Postprocessing Performance 
Criteria (%) 

[73] X-ray Combination of 
Two Different 
DBs 

284 COVID-19, 
310 Normal, 
330 Pneumonia 
Bacterial, 327 
Pneumonia Viral 
Img. 

75%:25% 4-fold ImageNet Supervised Rescaling COVID-19 from 

Other 
Pneumonia 

NA CoroNet 
(Based on 
Xception 
Architecture) 

Softmax NA Acc = 89.5, 
Pre = 97, 
F1-Score = 98 

[74] X-ray Combination of 
Four Different 
DBs 

455 COVID-19, 
2109 
Non-COVID Img. 

90%:10% 10-fold NA Supervised Rescaling, Data 
Augmentation 

COVID-19 from 

Non-COVID-19 
NA MobileNet V2 NA NA Acc = 99.18, 

Sen = 97.36, 
Spe = 99.42 

[21] X-ray Combination of 
Three Different 
DBs 

403 COVID-19, 
721 Non-COVID 
Img. 

932–192 Hold-out NA Supervised Resizing, 
Normalization, 
Data 
Augmentation 
using CovidGAN 
Based AC-GAN 

COVID-19 from 

Non-COVID-19 
NA VGG16 Softmax PCA 

Visualization 
Acc = 95, 
Sen = 90, Spe = 97 

[75] X-ray Combination of 
Three Different 
DBs 

69 COVID-19, 
79 Normal, 79 
Pneumonia 
Viruses, 79 
Pneumonia 
Bacterial Img. 

72%:18%:10% Hold-out ImageNet Supervised Data 
Augmentation 
using GAN 

COVID-19 from 

Non-COVID-19 
NA GoogleNet Softmax NA Acc = 100, 

Pre = 100,F1- 
Score = 100 

[76] X-ray Combination of 
Three Different 
DBs 

224 COVID-19, 
504 Healthy, 
400 Bacteria, 
314 Viral 
Pneumonia Img. 

90%:10% 10-fold ImageNet Supervised Resizing COVID-19 from 

Non-COVID-19 
NA MobileNet NA NA Acc = 96.78, 

Sen = 98.66, 
Spe = 96.46 

[47] X-ray Pediatric 
cxr,Twitter 
COVID-19 cxr, 
Montreal 
COVID-19 cxr 
DBs 

7595 Normal, 
6012 Pneumonia 
of Unknown 
Type, 2780 
Bacterial, 313 
COVID-19 Img. 

72%:18%:10% Hold-out ImageNet Supervised Pixel Rescaling, 
Median Filtering 
for Noise Removal 
and Edge 
Preservation, 
Normalization, 
Standardization 
for Identical 
Feature 
Distribution 

COVID-19 from 

Other 
Pneumonia 

Lung 
Region-Oriented 
Method 

U-Net (Seg- 
mentation), 
Ensemble of 
Pruned 
Models: 
VGG-16, 
VGG-19, and 
Inception-V3 
(Classifica- 
tion) 

Softmax Grad-CAM Acc = 99.01, 
Sen = 99.01, 
Pre = 99.01,F1- 
Score = 99.01, 
AUC = 99.72, 
MCC = 98.2 

( continued on next page ) 
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Table 1 ( continued ) 

Refs. Modality Dataset # Cases per 
Class 

Test Method Validation 
Method 

Transfer 
Learning 

ML Approach Preprocessing Classification Segmentation DNN Classifier Postprocessing Performance 
Criteria (%) 

[77] X-ray Combination of 
Two Different 
DBs 

180 COVID-19, 
6054 
Pneumonia, 
8851 Normal 
Img. 

3784–11,302 5-fold ImageNet Supervised Data 
Augmentation 

COVID-19 from 

Other 
Pneumonia 

NA Concatenation 
of the 
Xception and 
ResNet50V2 

Softmax NA Acc = 91.4 

[78] X-ray Combination of 
Two Different 
DBs 

181 COVID-19, 
364 Healthy 
Img. 

80%:20%:20% Hold-out ImageNet Supervised Normalization, 
Resizing 

COVID-19 from 

Non-COVID-19 
NA VGG-19 Softmax NA Acc = 96.3 

[37] X-ray Combination of 
Three Different 
DBs 

250 COVID-19, 
2753 Other 
Pulmonary 
Diseases, 3520 
Healthy Img. 

2000–803–
1100 

Hold-out ImageNet Supervised Resizing, Data 
Augmentation 

COVID-19 from 

Other 
Pneumonia 

NA VGG-16 Softmax Grad-CAM Acc = 98, 
Sen = 87, 
Spe = 94,F1- 
Score = 89 

[51] X-ray Combination of 
three Clinical 
DBs 

610 COVID-19, 
1493 
Non-COVID-19, 
1888 Normal, 
305 Pneumonia 
Viral, 3085 
Bacterial 
Pneumonia Img. 

80%:20% 5-fold Clinical Supervised Reshaping to 
Different 
Resolutions, 
Normalization 

COVID-19 from 

Non-COVID-19 
NA Stacked Multi- 

Resolution 
CovXNet 

Stacking using 
Meta-Learner 

Grad-CAM Acc = 97.4, 
Spe = 94.7, 
F1-Score = 97.1, 
Recall = 97.8, 
Pre = 96.3, 
AUC = 96.9 

[79] X-ray Combination of 
Different DB 

162 COVID-19, 
2003 Healthy, 
4280 Viral and 
Bacterial 
Pneumonia, 400 
Tuberculosis 
Img. 

90%:10% 10-fold ImageNet Supervised Resizing, 
Normalization, 
Data 
Augmentation 
using CovidGAN 
Based AC-GAN 

COVID-19 from 

Other 
Pneumonia 

NA Truncated 
InceptionNet 
V3 

Softmax Activation 
Maps 
Generation 

Acc = 98.77, 
Sen = 95, 
Spe = 99, Pre = 99, 
F1-Score = 97 

[80] X-ray Combination of 
Five Different 
DBs 

180 COVID-19, 
191 Normal, 54 
Bacterial 
Pneumonia, 20 
Viral Pneumonia 
Img. 

70%:10%:20% Hold-out ImageNet Supervised Standard 
Preprocessing, 
Segmentation, 
Data Type Casting, 
Histogram 

Equalization, 
Gamma 
Correction, 
Resizing 

COVID-19 from 

Other 
Pneumonia 

Lung 
Region-Oriented 
Method 

ResNet18 
(Classifica- 
tion), 
FC- 
DenseNet103 
(segmenta- 
tion) 

Majority 
Voting 

Probabilistic 
Grad-CAM 

Saliency Map 
Visualization 

Sen = 100, 
Pre = 76.9 

( continued on next page ) 
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Table 1 ( continued ) 

Refs. Modality Dataset # Cases per 
Class 

Test Method Validation 
Method 

Transfer 
Learning 

ML Approach Preprocessing Classification Segmentation DNN Classifier Postprocessing Performance 
Criteria (%) 

[81] X-ray COVIDx, Clinical 
DB 

9466 Normal, 
9501 
Non-COVID 
Pneumonia, 283 
COVID-19 Img. 

90%:10% 10-fold NA Supervised NA COVID-19 from 

Non-COVID-19 
NA Faster R–CNN NA NA Acc = 97.36,F1- 

Score = 98.46, 
Pre = 99.29, 
Spe = 95.48, 
Sen = 97.65 

[38] X-ray Combination of 
Two Different 
DBs 

1428 COVID-19, 
700 Bacterial 
Pneumonia, 504 
Healthy Img. 

70%:30% Hold-out ImageNet Supervised Data 
Augmentation 

COVID-19 from 

Non-COVID-19 
NA VGG-16 Softmax Grad-CAM Acc = 96 

[82] X-ray Combination of 
Three Different 
DBs 

585 Abnormal, 
585 Normal 
Img. 

1000–170 Hold-out ImageNet Supervised Resizing, Data 
Augmentation 

COVID-19 from 

Non-COVID-19 
NA ResNet18 Softmax NA Acc = 98,Sen = 99, 

Spe = 97,Pre = 97, 
AUC = 98 

[83] X-ray Combination of 
Three Different 
DBs 

137 COVID-19, 
150 Pneumonia 
Img. 

80%:20% 5-fold ImageNet Supervised Resizing, Data 
Augmentation, 
Normalization 

COVID-19 from 

Other 
Pneumonia 

NA Inception V3 Softmax Grad-CA, 
resize AUC = 1,Acc = 100, 

Sen = 99,Spe = 100 
[48] X-ray BIMCV- 

COVID19 + , 
PadChest, 
Clinical DB 

2589 COVID-19, 
4337 Normal 
Img. 

80%:20% 5-fold NA Supervised Histogram 

Matching Process, 
Rib Shadows 
Suppression, 
Convert to 
Grayscale, 
Contrast 
Enhancement by 
Contrast Limited 
Adaptive 
Histogram 

Equalization, Data 
Augmentation, 
Random Rotations, 
Width and Height 
Shift, Shear, Zoom, 
Horizontal Flips 

COVID-19 from 

Non-COVID-19 
Lung 
Region-Oriented 
Method 

U-Net (Seg- 
mentation), 
COVID-Xnet 
(Based on 
CNN, 
Classification) 

Softmax Grad-CAM Acc = 94.43, 
AUC = 98.8, 
F1-score = 93.14, 
Pre = 93.76, 
Spe = 96.3, 
Sen = 92.53 

[84] X-ray Combination of 
Four Different 
DBs 

219 COVID-19, 
1341 Normal, 
1345 Viral 
Pneumonia Img. 

70%:30% Hold-out NA Supervised Data 
Augmentation 

COVID-19 from 

Other 
Pneumonia 

NA CNN SVM NA Acc = 98.97, 
Sen = 89.39, 
Spe = 99.75,F1- 
Score = 96.72 

[6] X-ray Clinical 659 Normal, 295 
COVID-19 Img. 

80%:20% Hold-out NA Supervised NA COVID-19 from 

Non-COVID-19 
NA CNN Sigmoid NA Acc = 97.5,F1- 

Score = 97.5, 
Pre = 97.5, 
Recall = 97.5, 
ROC = 0.975 

[85] X-ray Combination of 
Two Different 
DBs 

202 COVID-19, 
300 Normal, 300 
Pneumonia Img. 

80%:20% 5-fold ImageNet Supervised Intensity 
Normalization, 
Class-label 
Encoding, Data 
Augmentation by 
CycleGAN, Width 
and Height Shift, 
Random Rotation, 
Horizontal Flips 

COVID-19 from 

Other 
Pneumonia 

NA EfficientNetB0 Softmax Grad-CAM Acc = 96.8 

( continued on next page ) 
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Table 1 ( continued ) 

Refs. Modality Dataset # Cases per 
Class 

Test Method Validation 
Method 

Transfer 
Learning 

ML Approach Preprocessing Classification Segmentation DNN Classifier Postprocessing Performance 
Criteria (%) 

[86] X-ray Combination of 
Two Different 
DBs 

224 COVID-19, 
700 Bacterial, 
504 Healthy: 
Patients 

70%:30% Hold-out ImageNet Supervised Data 
Augmentation, 
Resizing 

COVID-19 from 

Non-COVID-19 
NA VGG-16 Softmax Grad-CAM (to 

highlight the 
regions of 
interest) 

Acc = 96, 
spec = 97.27, 
Sen = 92.64 

[87] X-ray Combination of 
Different DBs 

2665 COVID-19, 
3692 
Pneumonia, 
3692 Normal 

9149- 450- 
450 

NA ImageNet Supervised Data 
Augmentation, 
Resizing, Lung 
Segmentation, 
CLAHE histogram 

equalization, 
Denoising 

COVID-19 from 

Non-COVID-19 
Lung 
Region-Oriented 
Method 

VGG-19 (Clas- 
sification), 
U-Net (Seg- 
mentation) 

Naive Bayes Grad-CAM 

visualization Acc = 98.67,Kappa 
score = 0.98,F1- 
Score = 100 

[88] X-ray Cohen and 
Kaggle 

455 Normal, 
457 Bacterial 
Pneumonia, 470 
Viral Pneumonia 
(Stage1), 480 
Viral Pneumonia 
(Stage2), 440 
COVID-19 Img. 

80%:20% 5-fold ImageNet Supervised Resizing, 
Normalization, 
Data 
Augmentation 

COVID-19 from 

Other 
Pneumonia 

NA Resnet101 Softmax Grad-CAM 

visualization 
Acc = 98.93, 
Sen = 98.93, 
Spec = 98.66, 
Pre = 96.39, 
F1-score = 98.15 

[5] X-ray COVIDx 8066 Normal, 
5521 
Pneumonia, 183 
COVID-19 Img. 

13,569–231 NA ImageNet Supervised Intensity 
Normalization, 
Resizing, Data 
Augmentation 

COVID-19 from 

Other 
Pneumonia 

NA EfficientNet Swish NA 
Acc = 93.9,Sen = 96.8, 
PPV = 100 

[89] X-ray Kaggle 219 COVID-19, 
1341 Normal, 
1345 Viral 
Pneumonia Img. 

70%:10%:20% 5-fold NA Supervised Cropping, Resizing COVID-19 from 

Other 
Pneumonia 

NA CVDNet Softmax NA Acc = 96.69 

[90] X-ray Combination of 
Six Different DBs 

900 COVID-19, 
900 Normal, 900 
Pneumonia Img. 

70%:30% Hold-out ImageNet Supervised Resizing, 
Converting to 
Color Image 

COVID-19 from 

Other 
Pneumonia 

NA E ‑DiCoNet ELM NA Acc = 94.07, 
Sen = 98.15, 
Spec = 91.48 

[91] X-ray Combination of 
Three Different 
DBs 

543 COVID_19, 
600 Normal, 600 
Pneumonia Img. 

1220–523 Hold-out ImageNet Supervised Resizing COVID-19 from 

Other 
Pneumonia 

NA AlexNet, 
ReliefF 

SVM NA Acc = 98.64, 
Spec = 98.64, 
Sen = 98.64, 
F-score = 98.63 

[92] X-ray chest X-ray 
(CXR) dataset 

27 Normal, 220 
SARS, 17 
Streptococcus 
Img. 

80%:20% 5-fold ImageNet Supervised Noise Removal by 
Wiener Filtering 

COVID-19 from 

Other 
Pneumonia 

NA FM-CNN MLP NA Acc = 98.06, 
Spec = 98.29, 
Sen = 97.22, 
F-score = 97.93 

( continued on next page ) 
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Table 1 ( continued ) 

Refs. Modality Dataset # Cases per 
Class 

Test Method Validation 
Method 

Transfer 
Learning 

ML Approach Preprocessing Classification Segmentation DNN Classifier Postprocessing Performance 
Criteria (%) 

[93] X-ray Combination of 
Different DBs 

423 COVID-19, 
1341 Normal, 
1345 Viral PNA 
Img. 

80%:20% 5-fold ImageNet Supervised Image Resize, 
CLAHE Image 
Enhancement, 
Image 
Augmentation 

COVID-19 from 

Other 
Pneumonia 

NA VGG-19 LMPL (Large 
margin 
piecewise 
linear) 

Heatmap 
Visualization 

Acc = 99.39, 
F1-score = 99.45, 
Pre = 99.47, 
Sen = 99.42 

[94] CT-Scan Clinical 219 COVID-19, 
224 Other 
Pneumonia, 175 
Healthy Img. 

85.4%: 14.6% Hold-out NA Supervised Segmentation, 
Data 
Augmentation 

COVID-19 from 

Other 
Pneumonia 

Lung 
Region-Oriented 
Method 

ResNet-18 
(Classifica- 
tion), 
VNET-IR-RPN 
(Segmenta- 
tion) 

Voting 
Strategy 

Total Infection 
Confidence 
Score 
Calculation 
using 
Probability 
Formula of the 
Noisy-or 
Bayesian 
Function 

Acc = 86.7, 
Pre = 81.3, 
F1-Score = 83.9 

[95] CT-Scan COVID-19 DB 1262 Positive 
COVID-19, 1230 
Negative 
COVID-19 Img. 

68%:17%: 
15% 

Hold-out ImageNet Supervised Data 
Augmentation 

COVID-19 from 

Non-COVID-19 
NA DenseNet201 Sigmoid NA Pre = 96.29, 

Recall = 96.29, 
F1-Score = 96.29, 
Spe = 96.21,Acc = 96.25 

[96] CT-Scan Clinical 368 COVID-19 
Patients, 127 
Patients with 
Other 
Pneumonia 

395–50–50 Hold-out NA Supervised Segmentation 
using Threshold 
Segmentation and 
Morphological 
Optimization 
Algorithms, 
Rescaling, 
Multi-view Fusion 

COVID-19 from 

Other 
Pneumonia 

Lung 
Region-Oriented 
Method 

ResNet50 Dense Layer NA Acc = 76, 
Sen = 81.1, 
Spe = 61.5 

[97] CT-Scan Combination of 
Different DBs 

1029 COVID-19, 
1695 
Non-COVID Img. 

1059–328–
1337 

Hold-out NA Supervised Clipping, 
Cropping, Data 
Augmentation by 
Image Intensity 
and Contrast 
Adjustment, 
Random Gaussian 
Noise, Flipping, 
and Rotation 

COVID-19 from 

Non-COVID-19 
Lung 
Region-Oriented 
Method 

DensNet-121 
(Classifica- 
tion), AH 

–Net 
(Segmenta- 
tion, Based on 
ResNet50) 

NA Grad-CAM Acc = 90.8, 
Sen = 84, 
Spe = 93, 
ppv = 79.4, 
npv = 94.8, 
Auc = 94.9 

[98] CT-Scan Clinical 108 COVID-19, 
86 Non-COVID 
Patients 

80%:20% Hold-out ImageNet Supervised Different Methods COVID-19 from 

Non-COVID-19 
NA ResNet-101, 

Xception 
Softmax NA Sen = 98.04, 

Spe = 100, 
Acc = 99.02 

[99] CT-Scan Clinical 3389 COVID-19, 
1593 
Non-COVID Img. 

Separate DB 5-fold NA Supervised Standard 
Preprocessing, 
VB-Net Toolkit for 
Segmentation, 
Lung Mask 
Generation 

COVID-19 from 

Non-COVID-19 
Lung 
Lesion-Oriented 
Method 

3D ResNet34 
(Classifica- 
tion), VB-Net 
(Segmenta- 
tion) 

Ensemble 
Learning 

Grad-CAM Acc = 87.5, 
Sen = 86.9, 
Spe = 90.1, 
AUC = 94.4, 
F1-Score = 82.0 

( continued on next page ) 
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Table 1 ( continued ) 

Refs. Modality Dataset # Cases per 
Class 

Test Method Validation 
Method 

Transfer 
Learning 

ML Approach Preprocessing Classification Segmentation DNN Classifier Postprocessing Performance 
Criteria (%) 

[100] CT-Scan Clinical 146 COVID-19, 
149 Non-COVID 
Img. 

135–20–140 Hold-out NA Supervised Data 
Augmentation 

COVID-19 from 

Non-COVID-19 
Lung 
Region-Oriented 
Method 

DenseNet 
(Classifica- 
tion) 

Softmax CAM Acc = 92, 
Sen = 97, 
Spe = 87, 
F1-Score = 93 

[101] CT-Scan Clinical 558 COVID-19 
Patients 

60%:20%:20% 5-fold NA Weakly- 
supervised 
learning 

NA COVID-19 from 

Other 
Pneumonia 

NA AD3D-MIL 
(Based on 
CNN) 

NA Proposed Loss 
Function 

Dice = 80.72, 
RVE = 15.96 

[102] CT-Scan Combination of 
Two Different 
DBs 

1118 COVID-19, 
96 Pneumonia, 
107 Healthy 
Img. 

70%:30% Hold-out NA Supervised Binary Mask, Lung 
Segmentation 
using Histogram 

Thresholding, 
Morphological 
Operation 
(Dilation, Hole 
Filling), and 
Removing All 
Small Connected 
Objects 

COVID-19 from 

Other 
Pneumonia 

Lung 
Region-Oriented 
Method 

CNN LSTM NA Acc = 99.68 

[103] CT-Scan Clinical 151 COVID-19, 
498 Non-COVID 
Patients 

490–82–77 Hold-out NA Supervised Resizing, Padding, 
Data 
Augmentation 

COVID-19 from 

Non-COVID-19 
NA CNN Softmax Visual 

Interpretation 
AUC = 70 

[104] CT-Scan Combination of 
Two Different 
DBs 

413 COVID-19, 
439 Normal or 
Pneumonia Img. 

50%:10%:40% 10-fold ImageNet Supervised NA COVID-19 from 

Non-COVID-19 
NA ResNet Softmax NA Acc = 93.01, 

Spe = 94.77, 
Sen = 91.45, 
Pre = 95.18 

[105] CT-Scan Clinical 73 COVID-19 
Patients 

NA 20-fold NA Supervised Hyper-Parameter 
Tuning using 
MODE Algorithm 

COVID-19 from 

Non-COVID-19 
NA CNN NA NA Acc = 92, 

F1-Score = 90, 
Sen = 90, Spe = 90 

[106] CT-Scan Clinical 98 COVID-19, 
103 Non-COVID 
Patients 

80%:10%:10% Hold-out NA Supervised Visual Inspection COVID-19 from 

Non-COVID-19 
NA BigBiGAN Linear NA AUC = 97.2, 

Sen = 92, Spe = 91 

[107] CT-Scan COVID-19 Set 470 COVID-19 
Suspects 

370–100 Hold-out COPDGene Supervised Standardization, 
Re -scaling, Down 
Sampling, Zero 
padding 

NA Lung 
Region-Oriented 
Method 

RTSU-Net 
(Based on 
RU-Net) 

Sigmoid, 
Softmax 

Upsampling IOU = 92.2, 
ASSD = 86.6 

[44] CT-Scan Clinical 79 COVID-19, 
100 Common 
Pneumonia, 130 
Patients without 
Pneumonia 

378–50–130 5-fold NA Semi- 
supervised 

Data 
Augmentation 

NA Lung 
Lesion-Oriented 
Method 

AD3D-MIL 
(Based on 
CNN) 

Bernouli 
Distribution 

CAM Acc = 97.9, 
AUC = 99, 
F1-Score = 97.9, 
Pre = 97.9, 
Recall = 97.9 

( continued on next page ) 
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Table 1 ( continued ) 

Refs. Modality Dataset # Cases per 
Class 

Test Method Validation 
Method 

Transfer 
Learning 

ML Approach Preprocessing Classification Segmentation DNN Classifier Postprocessing Performance 
Criteria (%) 

[108] CT-Scan COVID-19 
Clinical DB 

150 COVID-19, 
150 CAP, 150 
NP Img. 

80%:20% 5-fold TCIA Weakly- 
supervised 

Data 
Augmentation, 
Fixed-Sized Sliding 
Window, 
Segmentation 

COVID-19 from 

Other 
Pneumonia 

Lung 
Region-Oriented 
Method 

CNN (Classifi- 
cation), U-Net 
(Segmenta- 
tion) 

Softmax Multi-Window 

Voting, 
Sequential 
Information 
Attention 
Module, CAM 

(Class 
Activation 
Maps), 
Categorical- 
Specific Joint 
Saliency 

Acc = 96.2, 
Pre = 97.3, 
Sen = 94.5, 
Spe = 95.3, 
AUC = 97 

[45] CT-Scan COVID-SemiSeg 150 COVID-19, 
150 CAP, 150 
NP Img. 

45–5–50 Hold-out 1600 CT 
images with 
pseudo 
labels 

Semi- 
supervised 

Pseudo Label 
Generation, 
Resizing 

NA Lung 
Lesion-Oriented 
Method 

Semi- 
Supervised 
Inf-Net 

Sigmoid NA Dice = 73.9, 
Sen = 72.5, 
Spe = 96, 
MAE = 6.4 

[43] CT-Scan Clinical 1315 COVID-19, 
3342 
Non-COVID Img. 

3997- 60 - 600 5-fold NA Weakly- 
supervised 

Lobe 
Segmentation, 
Cropping, 
Resizing, Data 
Augmentation 

COVID-19 from 

Other 
Pneumonia 

Lung 
Region-Oriented 
Method 

3D-ResNets 
(Classifica- 
tion), 
3d-U-Net (Seg- 
mentation) 

Softmax Heatmap 
Visualization 

Acc = 93.3, 
Sen = 87.6, 
Spe = 95.5 

[50] CT-Scan Clinical 296 COVID-19, 
1735 CAP, 1325 
Non-Pneumonia 
Img. 

Separate DB NA NA Supervised Lung 
Segmentation 
using U-net 

COVID-19 from 

Other 
Pneumonia 

Lung 
Region-Oriented 
Method 

COVNet 
(Classification, 
Based on 
ResNet), 
U-Net (Seg- 
mentation) 

Softmax Grad-CAM AUC = 96, 
Sen = 90, Spe = 96 

[109] CT-Scan Clinical 1266 COVID-19, 
4106 Lung 
Cancer Patients 

Separate DB NA Clinical Supervised Lung 
Segmentation, 
3-Dimensional 
Bounding Box, 
Non-Lung Area 
Suppression 
Operation 

COVID-19 from 

Other 
Pneumonia 

Lung 
Region-Oriented 
Method 

DenseNet 
(Segmenta- 
tion), 
COVID-19Net 
(Classifica- 
tion) 

Sigmoid Combining 
Feature 
Vectors, 
Multivariate 
Cox 
Proportional 
Hazard Model, 
Visualizations 

Acc = 81.24, 
AUC = 0.90, 
Sen = 78.93, 
Spe = 89.93, 
F1-Score = 86.92 

( continued on next page ) 
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Table 1 ( continued ) 

Refs. Modality Dataset # Cases per 
Class 

Test Method Validation 
Method 

Transfer 
Learning 

ML Approach Preprocessing Classification Segmentation DNN Classifier Postprocessing Performance 
Criteria (%) 

[18] CT-Scan Clinical 521 COVID-19, 
665 Non-COVID 
Patients 

70%:20%:10% Hold-out ImageNet Supervised Lung 
Segmentation 
using 
Thresholding and 
The Manual Active 
Contour 
Segmentation 
Method, Padding, 
Resizing, Lung 
windowing, 
Normalization, 
Standardization 

COVID-19 from 

Non-COVID-19 
Lung 
Region-Oriented 
Method 

EfficientNet 
B4 

Sigmoid Generating 
Heat Map 

Acc = 96,Sen = 95, 
Spec = 96 

[110] CT-Scan Combination of 
Two Different 
DBs 

1272 
COVID-19,1230 
Non-COVID Img. 

70%:30% 5-fold and 
10-fold 

NA Semi- 
supervised 

Normalization, 
Standardization. 

COVID-19 from 

Non-COVID-19 
Lung 
Region-Oriented 
Method 

PQIS-Net (Seg- 
mentation) 

Majority 
Voting 

Patch-Based 
Classification 
on Segmented 
Lung CT 
Images 

Acc = 93.1, 
Pre = 89, 
Recall = 83.5,F1- 
Score = 82.6,AUC = 98.2 

[111] CT-Scan Combination of 
Different DBs 

1194 COVID-19, 
1357 
Non-COVID 
Pneumonia, 
1442 
Nonpneumonia 
Img. 

80%:20% Hold-out ImageNet Supervised Converting to 
One-channel 
Grayscale PNG 
Images, Rescaling, 
Normalizing, Data 
Augmentation 

COVID-19 from 

Other 
Pneumonia 

NA ResNet-50 Softmax Grad-CAM 

Acc = 99.87,Spec = 100, 
Sen = 99.58 

[46] CT-Scan Clinical DB, 
SPIE-AAPM-NCI 

111 COVID-19, 
115 CAP, 109 
Normal Patients 

300–15–20 Hold-out NA Supervised Generating 
Pseudo-Infection 
Anomalies using 
Perlin Noise, 
Resampling, 
Resizing, 
Normalization 

COVID-19 from 

Other 
Pneumonia 

Lung 
Lesion-Oriented 
Method 

BCDU-Net 
(Segmenta- 
tion), CNN 
(Classifica- 
tion) 

NA NA 
Acc = 86.66,Spec = 100, 
Sen = 90.91 

[112] CT-Scan Clinical 255 COVID-19, 
420 Typical 
Viral Pneumonia 
Img. 

Separate DB Hold-out ImageNet Supervised Converting to 
Grayscale, 
Grayscale 
Binarization, 
Background Area 
Filling, Reverse 
Color, Cropping To 
Obtain ROI Images 

COVID-19 from 

Non-COVID-19 
NA M-inception 

(Based on 
GoogleNet 
Inception-V3) 

Softmax NA 
Acc = 79.3,Spec = 83, 
Sen = 67,AUC = 81,F1- 
Score = 63 

( continued on next page ) 
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Table 1 ( continued ) 

Refs. Modality Dataset # Cases per 
Class 

Test Method Validation 
Method 

Transfer 
Learning 

ML Approach Preprocessing Classification Segmentation DNN Classifier Postprocessing Performance 
Criteria (%) 

[113] CT-Scan Clinical 51 COVID-19 
Patients, 55 
Patients with 
Other Diseases 

Separate DB Hold-out ImageNet Supervised NA NA Lung 
Lesion-Oriented 
Method 

UNet ++ 
(Based on 
ResNet-50) 

NA NA Acc = 96, 
Spec = 94, 
Sen = 98, 
PPV = 94.23, 
NPV = 97.92 

[114] CT-Scan Clinical 777 COVID-19, 
505 Bacteria 
Pneumonia, 708 
Normal Img. 

60%:10%:30% Hold-out ImageNet Supervised Lung Detection, 
Filling the 
Blank Area of 
Image with Its 
Rotational Lung 
Areas 

COVID-19 from 

Other 
Pneumonia 

NA DRENet 
(Based on 
ResNet-50 and 
FPN) 

NA Grad-CAM Pre = 93, 
Recall = 93, 
Acc = 93, 
Spec = 93, 
F1-Score = 93 

[115] CT-Scan Mosmed Dataset 1100 COVID-19, 
1980 Normal 
Img. 

1980–1100 NA ImageNet Supervised Resizing, Random 

Crops 
COVID-19 from 

Non-COVID-19 
NA ResNet-50 Majority 

Voting 
NA Acc = 96, 

AUC = 90, 
Sen = 100, 
Spec = 96 

[116] CT-Scan COVID-CTx 324 COVID-19, 
504 Normal 
Img. 

60%:20%:20% 3-fold NA Supervised Resizing, Lung 
Segmentation, 
K-means 
Clustering, 
Contrast 
Enhancement, 
Morphological 
Closing, Hole 
Filling, Data 
Augmentation 

COVID-19 from 

Non-COVID-19 
Lung 
Region-Oriented 
Method 

AM-SdenseNet 
(classifica- 
tion), U-Net 
(Segmenta- 
tion) 

Sigmoid NA Acc = 99.18, 
Pre = 99.32, 
Recall = 98.97, 
F1-score = 91.14 

[117] CT-Scan Combination of 
Two Different 
DBs 

1601 COVID-19, 
1626 
Non-COVID Img. 

80%:20% Hold-out NA Supervised NA COVID-19 from 

Non-COVID-19 
NA EfficientNet 

and 
Convolutinal 
Block 
Attention 
Module 
(CBAM) 

SVM NA Acc = 98, 
Pre = 98, Sen = 98, 
F1-score = 98 

[118] CT-Scan Combination of 
Two Different 
DBs 

259 COVID-19, 
171 
Non-COVID-19 
Patients 

NA 10-fold DeepLesi 
LIDC-IDRI 

Supervised Image Resize, 
Image 
Augmentation 
(Resizing, Random 

Flipping, Random 

Cropping, Color 
Distortions) 

COVID-19 from 

Non-COVID-19 
NA Prototypical 

Network 
Relu NA Acc = 88.5, 

Pre = 89.9, 
Recall = 88.6, 
AUC = 94.5 

[119] CT-Scan, 
X-ray 

Combination of 
Two Different 
DBs 

3065 COVID-19, 
3065 
Non-COVID Img. 

70%:30% NA NA Supervised Data 
Augmentation 

COVID-19 from 

Non-COVID-19 
NA ConvLSTM NA NA Acc = 98.45, 

F1-score = 98.07, 
Mcc = 96.81 

[49] CT-Scan, 
X-ray 

Combination of 
Two Different 
DBs 

2780 Bacterial 
Pneumonia, 
1493 Viral 
Pneumonia, 231 
COVID-19, 1583 
Normal Img. 

80%:20% NA ImageNet Supervised Intensity 
Normalization, 
CLAHE Method, 
DA, Resizing 

COVID-19 from 

Other 
Pneumonia 

Lung 
Region-Oriented 
Method 

U-Net (Seg- 
mentation), 
Inception 
ResNetV2 
(Classifica- 
tion) 

MLP NA Acc = 92.18, 
Sen = 92.11, 
Spec = 96.06, 
Pre = 92.38, 
F1-Score = 92.07 

1
4
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Fig. 5. DenseNet architecture designed for COVID-19 classification [15] . 

Fig. 6. ResNet architecture for COVID-19 image classification [16] . 

Fig. 7. EfficientNet model for COVID-19 clas- 
sification [18] . 
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odalities have been used as the input to the DL network developed
n each article. Chest radiological imaging, such as CT and X-ray, has
 vital role in the early diagnosis and treatment of COVID-19 disease
26] . 

The second column Dataset refers to image datasets collected by or
tilized in the reviewed articles. These datasets contain CT and/or X-
ay images from healthy, COVID-19, and Non-COVID patients. Since
OVID-19 is a new disease, there is no dataset of appropriate size for its
iagnosis purpose. Therefore, many works combine images from several
ifferent publicly available datasets, gather chest images from multiple
15 
nstitutions, or use a combination of their clinical images and public
atasets. 

The column # Cases Per Class indicates the number of im-
ges/patients in each class. In other words, the value of each cell in
his column shows which classes have been considered in the cor-
esponding article, and how many images or patients there are in
ach class. COVID-19 datasets are strongly imbalanced which can im-
act the model accuracy. Hence, several studies have proposed dif-
erent class balancing techniques to overcome the data imbalance
ssue [27] . 
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Fig. 8. InceptionV3 architecture for COVID-19 classification [15] . 

Fig. 9. The architecture of U-Net for COVID-19 
segmentation [20] . 

Fig. 10. A GAN architecture for COVID-19 detection [21] . 
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The column Test Method shows which technique has been used for
plitting data into three non-overlapping parts including the Training
Tr) set, Validation (V) set, and Test (Te) set. The division of input
ata into these three subsets is crucial in the creation of robust predic-
ion models to avoid overfitting, as well as to increase generalization.
verfitting is one of the main issues in the training of machine learning
16 
lgorithms [28] . It occurs when the training error is low, and the gen-
ralization error is high. Although a small training dataset is the main
eason for the overfitting problem, the complexity of the model can be
nother reason [29] . Many works apply a validation set to identify the
verfitting problem during the model training by controlling the model
omplexity [30] . It can help the model determine when to stop the train-
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ng process. For simplicity, we use two different patterns for reporting
he test method. The first pattern is Tr%: V%: Te% which indicates the
ercent of data assigned to each part, and the second pattern is Tr-V-Te
howing the number of data assigned to each part. We use the phrase
Separate DB ” for indicating the studies which have utilized separate
atasets for training and testing their DL models. 

The column Validation Method refers to the validation method used
o evaluate the efficiency of DL models. The applied validation meth-
ds contain K-fold cross-validation and the holdout method. The K-fold
ross-validation technique ensures that every observation from the orig-
nal dataset has the chance of appearing in the training and test sets [31] .
n this approach, at first, the data is randomly split into K equal-sized
olds (the K value is usually selected in the range of five to ten depend-
ng on the data size). Then, the model is trained on the K-1 folds and
alidated on the remaining fold. This process is repeated K times, with
ach of the K folds used exactly once as the test set. This technique is
ne of the best validation approaches if there are not enough instances
o train on [32] . On the other hand, the holdout method partitions data
andomly into two sets, training, and test. The size of the test set is typ-
cally smaller than that of the training set. Since the method involves a
ingle run, results depend on how the data is split into these two sets
33] . The holdout method is not effective for comparing multiple mod-
ls and tuning their hyper-parameters. Therefore, another very popular
orm of this method is usually utilized which splits data into three sepa-
ate sets including training, validation, and test sets [34] . The validation
et which is a holdout subset from the training set is used to tune vari-
us hyper-parameters and choose the best performing model. The final
odel is evaluated by the test set and the found error is considered the

eneralization error. 
The dataset used for the transfer learning process is reported in the

olumn Transfer Learning . The philosophy behind transfer learning is
hat people can intelligently utilize knowledge learned in the past to
olve new problems faster or more efficiently [35] . Transfer learning is
n approach in machine learning where knowledge learned in one or
ore tasks is transferred to improve learning in another related task

36] . The main goal of this technique is to decrease training task time,
mprove generalization performance [37] , and deal with small input
ataset problems [38] . Transfer learning has been widely adopted in
any COVID-19 studies to compensate for the scarcity of large-scale
ublic datasets for this disease. 

The column Learning Method can contain the values Supervised, Un-
upervised, Semi-supervised, and Weakly-supervised, showing which
achine learning approach has been used for training the deep neu-

al network. Supervised learning refers to a class of methods that learn
n a labeled dataset, where each training sample is a pair of inputs and
ts desired output [39] . In an unsupervised learning model, in contrast,
he algorithm tries to extract features and patterns from unlabeled data.
n other words, the algorithm does not receive any feedback from the
nvironment [40] . Clustering, association, and dimensionality reduc-
ion are three main tasks in unsupervised learning. A weakly-supervised
odel utilizes training data with incomplete, inexact, and inaccurate

nnotation [41] . Finally, semi-supervised learning describes a class of
lgorithms that seek to learn from both unlabeled and labeled samples
ypically assumed to be sampled from the same or similar distributions
42] . 

Since labeling lesion annotations is time-consuming and impracti-
al for clinicians [43] , Noisy labels exist widely for the segmentation
f large-scale 3D medical images. It can be either due to challenges for
ccurate annotation, such as low contrast, ambiguous boundaries, and
omplex appearances of the target, or caused by low-cost inaccurate
nnotations such as annotations provided by non-experts, human-in-
he-loop strategies [44] , and some algorithms generating pseudo labels
 45 , 46 ]. For this reason, some COVID-19 studies have applied weakly
upervised or semi-supervised learning frameworks in their segmenta-
ion tasks. 
17 
The pre-processing functions applied to input images are shown in
he column Pre-processing . In image processing, the pre-processing phase
ims to process raw input images to improve the quality of images, pro-
uce a more understandable format for the algorithm, enhance accu-
acy, increase the number of data, reduce the processing time, or stan-
ardize data acquired from multiple devices [ 47 , 48 ]. There are several
mportant steps in the pre-processing phase, such as data augmentation,
istogram equalization, image normalization, morphological operators,
egmentation, standardization, etc. 

The column Classification categorizes COVID-19 classification mod-
ls into two main groups: COVID-19 from Non-COVID and COVID-19
rom Other Pneumonia. The former indicates a two-class classification
here the class Non-COVID includes common pneumonia cases and non-
neumonia cases, and the latter shows a multi-class classification that
istinguishes among COVID-19, other types of pneumonia, and healthy
ases. 

The column Segmentation classifies COVID-19 segmentation models
nto two categories. The first category, called the Lung-Region-Oriented
ethod [ 47 , 49 , 50 ], is a prerequisite step in COVID-19 applications and

eparates the whole lung region and lung lobes from other regions in
nput images. The second category, called the Lung-Lesion-Oriented
ethod [ 44 , 51 ], aims to separate lesions or metal and motion artifacts

rom the lung regions which is a challenging detection task. 
The column DNN , which stands for deep neural network, shows the

etworks utilized for classification and segmentation tasks. In addition
o well-known models, some new DNNs have been also introduced in
he reviewed articles to detect COVID-19 infection in CT and X-ray chest
mages. 

The value of the column Classifier indicates the classifier algorithm
sed in deep learning models for COVID-19 diagnosis purposes. These
unctions are applied in the last layer of a neural network. Some of the
ost used classifiers are introduced as follows. The Softmax function

52] normalizes the real values of the input vector into a probability
istribution consisting of probabilities. The output values are in the in-
erval (0,1). The support vector machine (SVM) [53] constructs a set
f hyperplanes that provide the maximum margin distance to generate
he least generalization error. The Sigmoid function [52] , also called
he logistic function, is a very popular activation function for artificial
eural networks. The input value to this function is transformed into
 probability that is between 0 and 1. The Majority Voting classifier
54] merges different classification rules to produce a classifier that is
uperior to any of the individual ones. It classifies each input value in
he class that obtains a large number of votes. 

The column Post-processing shows post-processing procedures ap-
lied to the output of a deep neural network. Some of the most common
ost-processing techniques include generating heat-map, heat-map visu-
lization, calculating infection confidence, and GRAD-CAM (Gradient-
eighted Class Activation Mapping). 

Finally, the column Performance Criteria reports the performance
f deep learning models developed in the studies. The common per-
ormance criteria contain Accuracy (Acc), Sensitivity (Sen), Specificity
Spe), F1-score, Precision (Pre), Recall, and the area under the ROC
urve (AUC). 

It is worth mentioning that some of the reviewed articles have pro-
osed several DL models for COVID-19 diagnosis purposes or evaluated
heir models in two-class and multi-class modes. In these cases, for each
tudy, we only provide the details of the model which has obtained the
est result that may be the most helpful to researchers. 

. Discussion 

During the recent coronavirus pandemic, RT-PCR frequently pro-
uced false-negative findings that increased over time [55] . Due to high
alse-negative rates, this test sometimes considers COVID-19 patients to
e healthy people, which has severe consequences. The probability of
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 false-negative result on one day a patient has contracted the virus is
00% and falls to 67% over the four days of infection. On day five, the
ypical time of symptom onset, the chance of a false-negative result is
8% and drops to 20% on day eight. Then it begins to increase again,
rom 21% on day nine to 66% on day 21 [56] . As a result, an earlier
iagnosis tool is necessary to reduce the spread of the disease. 

Chest imaging could be a part of COVID-19 diagnosis in suspected or
ortable COVID-19 patients in the absence of an RT-PCR test, or where
he RT-PCR test results are delayed or are negative in the early infection
tage in the presence of symptoms indicative of COVID-19 [57] . Ben-
alek et al. [58] reported the typical imaging features for confirmed
OVID-19 pneumonia cases which can help in the early screening and
racking of the disease. 

The chest CT scan has been found to have a sensitivity value of 98%
nd is one of the most precise methods for diagnostics of this disease
59] . Hence, a chest CT may be viewed as a reliable complementary
iagnostic measure for RT-PCR to help physicians assess patients more
erfectly [18] . The report by Li et al. [60] showed that an initial CT
can performed as early as 5 days after the onset of symptoms would
llow for a confident separation of severe and non-severe patients. Lung
bnormalities on chest CT peak within 6–13 days after the initial onset
f symptoms reaching the highest severity score [61–63] . On the other
and, X-ray has a reported sensitivity of 69% for COVID-19 diagnosis
64] . However, compared to CT, it is faster, less harmful, easy to per-
orm, and costs less [65] . The radiographic findings detected on chest
-ray in COIVD-19 patients show the greatest severity on days 5–10 of
ymptom onset [66] . 

The work carried out by Shazia et al. [15] states that applying deep
earning techniques to radiological images for novel coronavirus identi-
cation has the potential to reduce the workload of medical practition-
rs and increase the accuracy and efficiency of COVID-19 diagnosis. In
hat follows, we discuss the reviewed articles on developing DL mod-

ls for the early diagnosis of COVID-19 using medical images, and at-
empt to answer these research questions: What are the most commonly
sed DL techniques for COVID-19 detection using medical images? What
hallenges may we face during the deep neural network training process
n chest images, and how can we cope with them? What are the advan-
ages and disadvantages of each imaging modality in classification and
egmentation tasks? 

.1. Deep neural networks for COVID-19 diagnosis 

A revolution in image processing and machine vision has taken
lace with the advent of deep learning techniques [120] . Deep neural
etworks have been used in the domain of image processing to solve
ifficult problems including image classification, detection, and segmen-
ation [121] . These networks eliminate the need for manual feature ex-
raction. They have introduced the concept of end-to-end learning by
eceiving annotated images as input and discovering the underlying pat-
erns in each image class automatically [122] . A convolutional neural
etwork can have hundreds of layers where each layer learns to de-
ect different image features. DNNs have also achieved great success in
nalyzing medical images by providing high accuracy, stability, scala-
ility, and efficiency [123] . They can provide Health professionals with
ore details about the internal organs and patient’s tissues, and help
hysicians diagnose many types of disease, such as pneumonia, brain
njuries, cancer, internal bleeding, and pneumonia, brain injuries, can-
er, internal bleeding, etc. [124] . Not only in medical image analysis for
he diagnosis of such diseases but also during the recent COVID-19 pan-
emic, deep learning has proved its success [23] . Gaur et al. [125] give
vidence on the successful application of deep learning techniques for
OVID-19 infection detection. Their work confirms that deep machine
ision models can be implemented in the healthcare sector to screen
nd detect COVID-19 from chest X-rays. Sethi et al. [126] also utilize
ifferent deep CNN architectures to provide doctors with diagnosis rec-
mmendations for COVID-19. They show that CNN-based architectures
18 
ave the potential to diagnose COVID-19 disease using chest X-ray Im-
ges. 

A variety of deep neural networks developed for COVID-19 diagno-
is purposes is shown in Fig. 11 . This figure also shows which classifiers
nd how many times have been used in each DNN. Due to using dif-
erent datasets with different sizes and properties, a direct comparison
etween deep networks considering performance metrics is not possible.
owever, based on our review, Res-Net and VGG are the most common
etworks used in classification tasks, and for segmentation tasks, various
ersions of U-Net deep neural networks have been utilized. 

Different experimental studies have proved good results of the state-
f-the-art deep architectures VGG and ResNet for challenging recogni-
ion and localization problems such as image segmentation [127] . The
ain advantage of VGG architecture is its good generalization ability

n new datasets [128] . In the 2014-ILSVRC competition, VGG became
amous, despite being in 2nd place, due to its simplicity, homogenous
opology, and increased depth [127] . On the other hand, ResNet can
revent the degradation problem of deep CNNs. This problem occurs
hen the accuracy gets saturated and quickly degrades with network
epth increasing [129] . ResNet has shortcut connections that skip one
r more layers and facilitate deep network training without adding extra
arameters or computational complexity. ResNet also lets feature maps
rom the initial layers that usually include fine details easily propagate
o the deeper layers [130] . 

It is clear also from Fig. 11 that the majority of works have utilized
he Softmax classifier in their models. As mentioned before, this classi-
er represents a probability distribution over class labels, and its output
an be directly displayed. Besides, since output values are between 0
nd 1, they can be directly fed into any other model without the need
or normalization. 

It is worth mentioning that using different pre-processing ap-
roaches, diverse classifiers, applying the transfer learning method, and
ther techniques employed for compensating for data shortage could di-
ectly affect the results of DNNs. A sufficient number of clinically anno-
ated data is critical for the training step. However, there are very few
linical datasets on COVID-19 which are publicly available and these
atasets contain a limited number of COVID-19 cases. Several reviewed
tudies [ 18 , 21 , 79–85 , 103 , 37 , 45 , 51 , 74–78 ] have applied transfer learn-
ng and image preprocessing techniques such as image augmentation or
sed a combination of different datasets to overcome the COVID-19 data
eakage and data imbalance problems and enhance their performance.
owever, these approaches may lead to high variance estimation of deep

earning models’ performance during the test phase [131] . Since many
f the COVID-19 prediction models are poorly reported, and at high risk
f bias and model overfitting [132] , more investigation will be needed
o ensure the performance of these models in clinical use. 

.2. Classification and segmentation techniques for COVID-19 diagnosis 

Fig. 12 shows the total number of studies conducted in the field of
egmentation and/or classification for diagnosing COVID-19 patients.
ased on the results of this figure, most studies have only focused on
he classification task. As mentioned before, we categorized COVID-19
lassification approaches into two main classes named COVID-19 from
on-COVID, and COVID-19 from Other Pneumonia, which respectively

efer to two-class and multi-class classifications. Although the differen-
iation of COVID-19 from other types of pneumonia is sometimes chal-
enging, an equal number of studies have modeled the COVID-19 diag-
osis problem as a two-class and multi-class classification task. Some
esearchers have also taken advantage of both classification and seg-
entation techniques to improve model accuracy. These models first

xtract the ROI (Region of Interest) of the image in the pre-processing
hase and then search within the ROI region instead of the whole re-
ion. However, most classification works have preferred to process the
hole of the image rather than the ROI region. The main reason is that
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Fig. 11. Number of times that each pair of DNNs and classifiers has been used in reviewed papers for COVID-19 diagnosis. 

Fig. 12. Total number of research works conducted in COVID-19 classification 
and segmentation, and number of studies done in each sub-class. 
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nnotating COVID-19 medical images for a segmentation task is difficult
nd time-consuming for clinicians. 

.3. Imaging modalities for COVID-19 diagnosis 

The most common imaging modalities for COVID-19 infection iden-
ification are CT scan, Lung Ultrasound (LUS), and Chest X-ray radiog-
aphy. The chest X-ray is low cost, easy to perform, and has low radi-
tion. It also is fast and immediately available for radiologist analysis;
he last feature has made it one of the first imaging modalities during
he COVID-19 pandemic [133] . Nevertheless, it has limited sensitivity
n detecting lung lesions in the early stages of infections [134] . While
he Chest CT, being a rapid imaging procedure, may be more sensitive
nd accurate for the early diagnosis of COVID-19, it exposes patients to
ore radiation than typical X-rays. Moreover, it is time-consuming for
19 
adiologists to diagnose COVID-19 from CT-scan images (about 21.5 min
or experienced ones). After each patient, CT scanners will need to be
anitized which is a time-consuming, tedious, and expensive process
 135 , 136 ]. 

Compared to the other two modalities, chest ultrasound is low-cost
nd radiation-free. It can accurately detect the location of objects in
eal-time and be applied to different lung diseases [137] . Ultrasound
as a low false-negative rate in COVID-19 diagnosis [138] . All COVID-
9 abnormalities which are visible in CT scan images are also presented
n ultrasound images just as clearly [139] . Its accuracy in identifying
ung pathologies is better than Chest X-ray, it also is portable, safe, non-
nvasive, repeatable, and easy to use [134] . However, it shows low sen-
itivity in comparison to chest X-rays, and it cannot detect deep and
ntrapulmonary lesions [140] . 

In the absence of a CT scan, a chest MRI could be recommended
or suspected or confirmed COVID-19 patients. Although MRI has low
natomic resolution and is in danger of inevitable artifacts because of
reathing motion, its ability to visualize variations in lung structure is
onstantly evolving [141] . 

Some other imaging techniques have also been utilized for the
OVID-19 diagnosis such as Hyperspectral Imaging (HSI), Scanning
lectron Microscopy (SEM), and Positron Emission Tomography (PET).
SI is a medical imaging technique that offers noninvasive disease di-
gnosis. HSI, also known as Imaging Spectroscopy, can capture spectral
nformation for multiple wavelengths at each image pixel [142] . The
aximum contrast in hyperspectral imaging is related to the maximum
article concentration [143] . The main disadvantages of hyperspectral
maging are its cost and complexity. To analyze hyperspectral data, fast
omputers, sensitive detectors, and large data storage capacities are re-
uired. 

SEM is a powerful tool for infectious disease diagnosis and scans the
ample surface morphology by bright focused electron beam emission
144] . It can produce high-resolution and high-quality images that re-
eal complex and delicate structures. However, it has several cons. In
his technique, samples must always be in a vacuum, so this technique
annot be used for live specimens. Electron microscopes are large and
eed plenty of space in a laboratory. They also are high-sensitive and
ould be affected by magnetic fields and vibrations of other lab equip-
ent. Artifacts may be present in SEM images and need to be avoided

145] . 
PET is a type of nuclear medicine imaging. It applies a small amount

f radioactive material to visualize and measure variations in metabolic
rocesses. This non-invasive approach can display very early changes
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Fig. 13. Total number of studies conducted on each modality, and number of 
classification and segmentation works done for each modality. . 
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n the cells. Despite the advantages of the PET approach, it is not a
outine examination for COVID-19 diagnosis because of its low global
ccessibility, high inspection cost, complex scanning procedures, and
oncurrent risks of virus spreading. 

Considering the importance and the role of CT and X-ray chest im-
ges in diagnosing COVID-19 patients, our review has investigated ma-
hine vision-based techniques developed in the literature for the early
iagnostics of COVID-19 and other types of pneumonia using these
maging modalities. Fig. 13 illustrates the total number of research
orks reviewed for each one. It also shows the number of classification
nd segmentation tasks conducted for each modality. As one can see,
ost researchers have selected to work on the X-ray modality. Also, the

ombination of CT-Scan and segmentation in the diagnosis of COVID-
9 patients is more common than X-ray and segmentation. The reason
s that CT-Scan produces a 3D view of the chest region and allows for a
ore detailed view compared to X-ray. Most X-ray modality-based stud-

es have focused on classification for COVID-19 diagnosis, which is a less
hallenging task. 

. Challenges 

Deep learning approaches require a large amount of data to build a
obust predictive model. However, COVID-19 is a new infectious dis-
ase, and the lack of large-scale labeled data is the main challenge
n this area. It might lead to overfitting and reduce the accuracy of
L-based models. To overcome this challenge, a majority of works
 21 , 37 , 51 , 74–85 ] have combined several public datasets to compensate
or the scarcity of well-annotated datasets of appropriate size. However,
uplication of images across these datasets is a potential risk during data
ombination tasks. 

Transfer learning is another technique to cope with overfitting
nd data shortage problems. It is more likely to have a more ac-
urate model by fine-tuning the pre-trained model than training the
odel from scratch on a small dataset [ 77 , 78 , 146 ]. Some studies

 18 , 45 , 47 , 49 , 80 , 113 ] have used transfer learning to effectively train
odels on relatively small labeled datasets in COVID-19 segmentation

asks. However, they have mostly applied deep neural networks pre-
rained on the ImageNet dataset which includes images that are entirely
ifferent from chest images. A small number of segmentation tasks have
20 
lso used chest images with pseudo labels for the pre-training stage [45] .
reparing noisy labels for the segmentation task is much easier than ob-
aining clean annotations at the pixel level. Consequently, some research
orks have attempted to develop a framework to learn from noisy label

mages [44] . 
Class imbalance is another main issue in COVID-19 diagnosis since

he number of data related to COVID-19 is much less than other pneumo-
ia diseases. Several works [ 21 , 37 , 67 , 69 , 70 , 100 , 103 ] applied data aug-
entation methods to compensate for the small COVID-19 datasets and

void unbalancing data problems. Also, some researchers [ 21 , 75 , 79 , 85 ]
sed the Generative Adversarial Network (GAN) framework in the pre-
rocessing phase to generate synthetic images to deal with this problem.

Most of the COVID-19 images compress into Non-DICOM formats
eading to quality loss. Since the quality of public health information
s essential for health monitoring, the lack of image quality remains
 challenge in the COVID-19 diagnosis problem. The work carried out
y Harmon et al. [97] has reconstructed CT images by super-resolution
echnique to achieve better accuracy. This technique improves the ac-
uracy of algorithms by making enhanced images with higher contrast.

Generally, lung segmentation can improve the accuracy of a classi-
cation task and reduce misdiagnosis [147] . As mentioned before, we
rouped the COVID-19 segmentation approaches into two main cate-
ories, named the lung-region-oriented methods and the lung-lesion-
riented methods. Lesion detection is a challenging task in the medical
maging area as the lesion size is small in comparison to the whole lung
ize. In addition, the shape of lesions and their texture and location are
ery diverse. Most works [ 108 , 148–150 ] applied U-Net architecture or
ttention-based U-Net to segment lesions and lung regions in COVID-19
utomatic detection tasks. Another challenging task is to discriminate
OVID-19 from other types of viral pneumonia since COVID-19 is simi-

arly caused by an infective agent. Several DL-based models have been
eveloped in the literature to distinguish between them [ 51 , 68 ]. 

. Recommendations 

The awareness and knowledge of the different clinical features of
OVID-19 are essential in the early diagnosis and management of the
ecent pandemic. Some studies were conducted to compare the clinical
resentations of COVID-19 patients versus patients infected with other
ypes of pneumonia [151–155] . Researchers found that considering a
ombination of information such as background and clinical findings
f patients, the duration of the symptoms, ancillary imaging findings,
nd follow-up CT-Scan imaging when needed would be helpful in the
ifferential diagnosis [152] . Based on this, we strongly recommend de-
eloping DL-based models that utilize clinical text data, as well as CT
nd X-ray images to provide a more accurate diagnosis of COVID-19.
hile many DL-based techniques have been proposed in the literature

or detecting COVID-19 patients based on X-ray images, CT-scan im-
ges, or both, less work is being done on diagnosis and prediction using
linical text data. Moreover, to the best of our knowledge, there is no
esearch work in the literature focusing on COVID-19 diagnosis based
n both medical images and textual data. 

As we mentioned before, dealing with small-size datasets is the main
hallenge in the COVID-19 diagnosis area which can lead to overfit-
ing and reduce the model generalization performance. Researchers may
ddress this problem through various model enhancement and data
eneration techniques. Since more complex models with more hyper-
arameters are more overfitting-prone than shallower ones, the adapta-
ion of model complexity to the complexity of data can help researchers
vercome the issue of overfitting [156] . Another effective way to have
ore accurate predictions is combining the results of multiple models,
hich is called ensemble learning [157] . This approach involves several

ndividual models combined in some way such as weighted averaging,
nd voting. The ensemble model obtains better generalization perfor-
ance compared to any of the individual models. 
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Data imbalance is another main issue in diagnosing COVID-19 pa-
ients which can undermine model predictability. The oversampling
ethods can alleviate both data scarcity and data imbalance problems

158] . One approach to oversampling is generating synthetic samples
sing augmentation techniques such as GAN. 

. Conclusion 

COVID-19 has spread dramatically in a short time around the world.
he SARS-CoV-2 infection causes symptoms from weak to severe in dif-
erent people, and to date, more than 6.5 million deaths have been re-
orted to WHO ( https://covid19.who.int ). Early diagnosis of COVID-19
an help to prevent the spread of this pneumonia, and save many lives.
lthough the standard test for COVID-19 diagnosis is RT-PCR, this test is

ime-consuming, and it is possible to show false-negative results [159] .
herefore, many researchers applied deep learning models to detect
OVID-19 in the early stage using X-ray and CT images. Chest imaging
as a useful role in the detection and management of COVID-19, even
n the early stage of the disease. It helps in suspected patients’ iden-
ification, Breaking the disease transmission chain, and preventing the
urther spread of infection [113] . Deep learning approaches can extract
ich features from chest images. They are capable of interpreting medi-
al images and distinguishing different types of pneumonia. Physicians
an predict COVID-19, estimate its severity, and extract and interpret
he infected region by the data extracted from these networks [65] . 

During the course of this study, we have undertaken a comprehen-
ive review of some 60 papers that have appeared in the literature on
he subject of deep learning-based COVID-19 segmentation and classifi-
ation using X-ray and CT images. We reported the informative details
f each model proposed in the reviewed papers. We also listed the public
atasets for diagnosing COVID-19 patients and provided several charts
ummarizing various techniques used in the different phases of devel-
ping a DL-based diagnostic model for COVID-19. 

Finally, we discussed the challenges in the research on COVID-19
iagnosis based on medical imaging. We found that the reviewed mod-
ls are at high risk of bias especially because of the overfitting prob-
em, and their generalization performance is therefore unreliable. Con-
equently, none of these models are recommended for clinical use. Since
he scarcity of large-scale public annotated datasets is one of the main
hallenges leading to overfitting, the compilation, curating, and sharing
f well-annotated datasets is urgently needed in order to develop and
alidate more accurate models for diagnosing COVID-19. 
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