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ARTICLE INFO ABSTRACT

Keywords: A photoplethysmogram (PPG) is an optically-derived signal that records the variation in blood volume within
Blood pressure the microvasculature. Certain cardiovascular diseases (CVDs) are symptomatic of damaged blood vessels
FPGA

and problems in blood flow, including hypertension. While software implementations for heart rate and
blood pressure estimation exist, point-of-care systems demand hardware-based implementations for real-time
estimations to be useful for CVD detection. In this study, digital field programmable gate array (FPGA) based
systems are developed for heart rate and blood pressure estimation from PPG signals by means of linear
regression. In addition to the blood pressure estimation system, we present a prototype hypertension level
detection system that achieves 92.42% accuracy while consuming 0.364 W of power. The Mean Absolute Error
(MAE) + Standard Deviation (SD) for heart rate estimation is 3.17 + 2.79 beat per minute. The corresponding
results for systolic and diastolic blood-pressure estimation are 4.75 + 2.78 and 3.34 + 2.60, respectively. The
prototype can be further extended to wearable devices and medical equipment in the future.

Heart rate
Hypertension
Photoplethysmogram

1. Introduction an essential parameter for physiological and pathological condition
analysis. Detection of abnormal heart rate may indicate various disease
Blood pressure (BP) is a measure of the force of the blood against states. The heart generally pumps the blood at about 60 to 100 beats per

the arteries. Normal blood pressure is necessary to ensure the proper minute (bpm). An irregular heartbeat may indicate underlying different
flow of blood from the heart to body organs and tissues. High BP is a

risk factor for ischaemic heart disease and cardiovascular diseases [1].
Uncontrolled high BP can cause heart failure, kidney disease, dementia,
and other health issues. High blood pressure affects more than 1 billion
people worldwide and accounts for more than 20% of all cardiovascular
diseases [2,3]. BP is categorized into systolic blood pressure (SBP)

complications in the heart. Tachycardia is characterized by a heart
rate exceeding 100 bpm and bradycardia by a heart rate below 60
bpm [7]. Reliable determination of heart rate can help detect the types
of arrhythmia during emergency situations.

A non-invasive technique called photoplethysmography (PPG) mea-

and diastolic blood pressure (DBP). Normal blood pressure level is sures volumetric fluctuations in blood circulation [8]. As the volume
generally considered if SBP<120 mm Hg and DBP<80 mm Hg [4]. of blood changes with the pumping of blood from the heart, HR and
If it exceeds a certain range, then it is called hypertension, which is BP can be estimated from the PPG signal. It is a simple technique that
a multifactorial disease involving a broad array of risk factors and can be measured from the fingertip easily using a sensor. Hence, HR
targets different organ injuries and cardiovascular events [5]. Blood and BP prediction from PPG is simple and less time-consuming. Also,
pressure is classified into different stages according to the level. Table 1 the feasibility of hypertension detection from PPG signal can also be
shows the different stages of hypertension and the corresponding blood analysed for quick identification and treatment.

pressures [6]. Yue et al. [9] used a Support Vector Machine (SVM) method to

Both low and high BP can cause serious issues in the human body.
Prolonged elevated blood pressure is a serious condition that may
deteriorate if left untreated and lead to serious CVDs and ultimately
to death. Among the blood pressure category of Table 1, Stage 1
and Stage 2 are considered as hypertension. Heart rate (HR) is also

predict blood pressure using 9 features from the PPG signal. Systolic
pressure has a mean absolute error (MAE)+ standard deviation (SD) of
11.64 + 8.20 mmHg and diastolic pressure has MAE + SD of 7.61 + 6.78
mmHg. Hamed et al. [10] used 21 morphology features from the PPG
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Table 1
Blood Pressure Categories [6].

Blood pressure category  Systolic blood pressure Or Diastolic blood pressure

(mm Hg) (mm Hg)
Low <90 OR <60
Normal <120 And <80
Prehypertension 120-139 Or 80-89
Stage 1 hypertension 140-159 Or 90-99
Stage 2 hypertension > 160 Or >100

signal of 30 patients for blood pressure estimation. They achieved an
MAE of 3.32 mmHg for DBP and 7.41 mmHg for SBP. Mitja et al. [11]
achieved an MAE of 8.57 mmHg for SBP and 4.42 mmHg for DBP.
Examples of hardware-based implementations for BP estimation include
real-time implementation of discrete circuit components such as micro-
controllers, open-source hardware (e.g., Arduino), etc. Wang et al. [12]
implemented a digital system for estimating blood pressure using a
fast digital chip 3.97 mm? in size and having a power consumption
of 15.62 mW. Their system achieved a maximum blood pressure error
of +6 mm Hg from PPG signals acquired from 8 patients. Bo et al. [13]
designed a cuffless blood pressure prediction device utilizing ECG and
PPG signals. Their system was implemented in heterogeneous digital
signal processing and Digital Field Programmable Gate Array (FPGA)
platforms, but it remains to be validated.

Research into the detection of hypertension from PPG signals is
ongoing.

Graham et al. [14] achieved a maximum of 80% accuracy using
a deep learning model for detecting hypertension from PPG signals.
Erick et al. [15] applied different machine-learning algorithms to detect
hypertension from PPG signals. They used 22 features and achieved an
accuracy of 71.42% accuracy using an SVM classifier.

Heart rate prediction from PPG signals is also an active topic of
research. Yuntong et al. [16] combined signal processing and machine
learning and achieved 5% error in heart rate prediction. They used
10 to 20 features in their study for different trials. Attila et al. [17]
used a convolution neural network for predicting heart rate. They
obtained MAE of 7.47 bpm for the Wearable Stress and Affect Detection
(WESAD) dataset [18] and an MAE of 7.65 bpm for the PPG-DaLiA
dataset [19]. Xiangmao et al. [20] used deep learning to design a heart
rate detection approach which achieved an average absolute error of
1.61 bpm. Motin et al. [21] achieved an MAE of 1.85 bpm for 23
PPG recordings during physical exercise. They used a Wiener filtering-
based denoising algorithm to estimate heart rate. Karim et al. [22]
designed an FPGA-based heart rate calculation system using a Xilinx
system generator, though the accuracy and performance analysis of
their designed system is missing.

The above analysis validates the use of PPG signals for blood pres-
sure and heart rate estimation. However, most of the research works
done for these parameter estimations and hypertension detection is at
the software level. While there are a few reports of hardware-based im-
plementations using FPGA or predecessors in the literature [12,13,22],
they lack system performance and power analyses; also, the number
of subjects taking part in those studies is not adequate for proper
validation. The present study reports on the hardware developments
in order for a point-of-care system to be used for patient assessment in
the clinical setting.

2. Materials and methods

To construct a system for predicting blood pressure and heart rate,
we must choose an appropriate dataset that includes the PPG signal
in addition to the participant’s blood pressure and heart rates. After
denoising, selected features were extracted from the signal and used
to develop a robust classifier model for estimating blood pressure and
heart rate. Thereafter, the system was modified to allow for hyperten-
sion detection. Finally, the performance of the system was analysed.
The overall methodology is depicted in Fig. 1
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Fig. 1. Overall methodology of the study.

2.1. Dataset and data selection

The open-source dataset “PPG-BP” provided the signals on which
the present study is based [23]. A total of 219 subjects participated
in the data acquisition procedure where 3 segments of PPG signal were
collected. Each segment contains 2100 samples and the sampling rate is
1 KHz. The data set contains the age, sex, height, systolic and diastolic
blood pressure and heart rate of each subject. Also, the Signal Quality
Index (SQI) for each recording is included in the dataset. A symmetric
signal’s probability distribution is measured by skewness, which has
been found to be connected to the quality of the PPG waveform [24].

Only signals having SQI equal to or above 0.8 were selected for anal-
ysis as signals having higher SQI are known to provide better accuracy
and estimation [25], which yielded 331 recordings from 153 subjects.
After estimating both the systolic and diastolic blood pressures, we
designed a hypertension classification system. Out of the total selected
recordings, 80% were used for training while the remainder were used
in testing.

2.2. Hardware platform

Hardware-based digital and embedded systems are becoming more
common due to their multifunction capability along with low cost
and high-performance accuracy [26]. FPGAs, Complex Programmable
Logic Devices (CPLDs), Simple Programmable Logic Devices (SPLDs),
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Fig. 3. Preprocessing subsystem for denoising raw PPG signals.

microcontrollers, etc., are available for hardware-based digital system
design and implementation. Hard-wired analogue circuit design is an-
other option, but it is more complex and requires a large number of
components; moreover, noise, nonlinearities, and distortion affect the
performance of the analogue circuits. While FPGAs contain much more
logic blocks than CPLD or SPLD, they allow for greater customization
and more complex processes than microcontrollers. Moreover, they can
perform an operation with fewer resources than an analogue circuit,
occupying less board space while exhibiting greater power efficiency
and reliability.

We used a Xilinx system generator (XSG, Xilinx, Inc., San Jose,
CA, USA) and MATLAB® (The Mathworks, Inc., Natick, Massachusetts,
USA) to design the proposed system. In XSG we utilized a ZedBoardTM
AMD Zyng-7000 ARM/FPGA Development Board to realize the con-
cept of the study. It offers the advantage of low cost and long life.
First, we have to design the preprocessing subsystem, feature extrac-
tion subsystem, and classifier subsystem in the XSG and then analyse
the performance of the developed prototype. The overall hardware
architecture is shown in Fig. 2.

2.3. Preprocessing

PPG signals may be contaminated by motion artifacts, muscle noise,
baseline wander, etc., during data acquisition, and need to be processed
before further analysis. Before preprocessing, the PPG signal is normal-
ized using a divider block. Then the noise signals outside the range
of PPG signal have to be suppressed. To eliminate the high-frequency
noise, a low pass filter of 15 Hz needs to be developed.

Finite impulse response (FIR) filters were designed as low-pass
filters for our system. FIR filters are stable due to their non-feedback na-
ture and also provide advantages of phase linearity and low coefficient
sensitivity over infinite impulse response (IIR) filter [27]. The Xilinx
system generator provides a Filter Design and Analysis (FDA) tool that
allows users to design the filter according to their specifications. The
filter order for the low pass filter in this case was 81. The fast Fourier
transform (FFT) of the preprocessed signal was checked to ensure the
denoising of the signal was adequate. The preprocessor subsystem of
Fig. 2 is expanded in Fig. 3.

2.4. Feature extraction
In order to build a simple hardware architecture, the features must

be chosen such that they can be extracted from the hardware proto-
type. Statistical features are relatively easy to implement in the XSG.

We extracted the following statistical features when designing the
hardware-based system: sum, mean, absolute energy (AE), root mean
square (RMS), variance, standard deviation, skewness and kurtosis.
Applying the various combinations of these features, it was found that
the combination of mean, variance, absolute energy, and root mean
square provided the best results. We chose these four statistical features
since they have been found to be important features of PPG in other
studies based on the same dataset [8,28,29].
The mean, x, is expressed by:

N
_ 1
mean, % = — 214 X; (€]
=
The variance is defined as follows:

N o2
(X=X

Variance, 6> = Z'_I(T’) (2)

Absolute signal energy (AE) is a measure of strength of the data that
can be derived from the equation:

N
AE = Z xl.2 3
i=1

The root mean square value can be found from the following
equation:

RMS =

M=

2 @

L
N3

In Egs. (1)-(4), N is the total number of samples and x; is the
value of i,, sample of a signal. These equations are implemented in
the hardware design in XSG.

The preprocessed signal is stored in a RAM first, as shown in Fig. 4.
It uses two counters and a multiplexer (Mux) for storing each sample
in a data address. The first counter counts up to 2100 and till then,
the writing enable (WE) is disabled using a not gate. The counter 2
starts counting with counter 1, but it enables the writing enable of
RAM after counting 2100 and continues to count till 4200 for storing
each sample. Two comparator blocks are used to generate two control
signals: ctrl 1(i) and ctrl 2(i). They are used to store values in the
register during feature extraction.

The system architecture of the different feature extractor designs in
XSG is presented in Fig. 5. For mean extraction, an accumulator adds all
the samples of a PPG signal. The output of the accumulator is divided
by the total no. of sample to extract mean value and it is stored in a
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Fig. 5. Feature extraction subsystem.

register. In the case of AE, the sample is squared using a multiplier
block and then added using an accumulator. In the case of RMS, the
output of the accumulator used in AE is divided by the total no. of
samples and then root squaring the output of the divider block, we get
the desired result. Ctrl_1(i) is used to store the values in registers.

For variance determination, we have used a subtractor block, which
subtracts the mean value from the sample stored in the RAM. It is
squared and an accumulator is used for summation, which is divided
by the total number of samples to get the variance. Ctrl_2(i) is used to
store the value in a register.

2.5. Classifier selection

Various machine-learning algorithms are available for the classifica-
tion of PPG signals. For hardware implementation, however, one needs
to select a hardware-friendly classifier and also be able to utilize the
extracted features simply. Accordingly, linear regression was used in

this study as it is simple to implement at the hardware level, requiring
fewer resources that will ensure lower power consumption. For estimat-
ing or predicting a variable, regression analysis is usually used [30]. In
mathematical analysis, linear regression is employed when we want to
measure the expected effects and the modelling of those effects against
one or more input variables [31]. Simple linear regression and multiple
linear regression are two different types of linear regression. As we had
extracted a total of 4 statistical features for our study, we used multiple
linear regression to design the model. In multiple linear regression,
there is more than one independent variable on which the estimated
value depends. It is expressed by the following:

y=>b,+bix| +byxy+ - +b,x, 5)

where y is the estimated value, b, is the intercept, b,,b,, ..., b,, are re-
gression coefficient, and x,, x,, xs, ... ., x,, are the independent variables
or the feature values.

The system architecture designed in Xilinx is shown in Fig. 6. The
regression coefficient and the intercept values were taken from the
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model trained in MATLAB. This system estimated heart rate, systolic
blood pressure and diastolic blood pressure from the PPG signal.

For developing the hypertension classification system, the estimated
SBP and DBP were utilized. In this system, the extracted statistical
features went to two linear regression models, which estimated the SBP
and DBP simultaneously. The SBP and DBP values were checked by
two individual comparators, which diagnosed the hypertension levels
of SBP and DBP, respectively. The hardware architecture is shown in
Fig. 7. Hypertension is classified into 5 levels for this study. Class 1
indicates Stage 2 hypertension, Class 2 indicates Stage 1 hypertension,
Class 3 indicates prehypertension, Class 4 indicates low blood pressure
and Class 5 indicates normal. The final comparator in the hypertension
classification system compares the two comparator outputs and shows
the hypertension level according to the hypertension classification as
shown in Table 1.

IPEM-Translation 9 (2024) 100024

Table 2
Pearson correlation coefficient for hardware and simulation-based Features.

Feature Pearson correlation coefficient
Mean 0.9982
Variance 0.9882
AE 0.9914
RMS 0.9795

3. Performance analysis
3.1. Performance of preprocessor

We have designed the preprocessor with a low-pass filter. The FFT
of the raw PPG signal and output of the preprocessor is shown in Fig. 8.
It can be seen that the noise is almost fully suppressed above 15 Hz.

3.2. Performance of feature extractor

The feature extractor subsystem extracts four statistical features. To
verify the extracted features, they are compared with features extracted
in MATLAB. We determined the Pearson correlation coefficient and
root-squared error(RSE) values for statistical analysis.

The most popular method for determining a linear connection is
the Pearson correlation coefficient (r). It is expressed by the following
equation:

1 2xXyx—30 -7y

r=— 53, ) ®)

where r is Pearson correlation coefficient, n is the total number of
compared data, x and j are the average of x and y values, x values are
considered software data and y values are considered hardware data,
S, &S, are corresponding standard deviations.

In our study, we used four statistical features, which are extracted
from the designed subsystem. The Pearson correlation coefficients of
these features are presented in Table 2. A Pearson correlation coeffi-
cient value close to 1 indicates higher accuracy. From the table, we
can see all the extracted statistical features from the subsystem have a
Pearson correlation coefficient above 0.97.

Another metric is root squared error (RSE), one of the common
methods for gauging how well a model predicts quantitative data. It
is expressed by:

RSE=+(X-Y)? (@]

where X represents software outcome and Y represents hardware out-
come. RSE Value closer to 0O indicates higher accuracy [32]. Fig. 9
shows the boxplot of RSE data for the extracted features. A closer value
to 0 indicates higher accuracy. In the figure, all the RSE data are close
to 0.

The statistical feature values extracted from hardware have varia-
tions with the features extracted from software. In the hardware design,
we had to convert the data type of the signals several times. Due to
the conversion between different datatypes and computational delays,
there are slight mismatches between hardware and software features.
However, the Pearson correlation coefficient closer to 1 and RSE values
closer to 0 give a satisfactory result.

3.3. Performance of the classifier

We have designed a system to estimate the heart rate and blood
pressure from the PPG signals. The model adds the product of feature
values with their correlated regression coefficients and finally, the
intercept value is added to provide the final result. The heart rate value
ranges from 52 to 103 bpm, systolic pressure ranges from 80 to 181
mmHg and diastolic pressure ranges from 42 to 102 mmHg. Among the
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Table 3
M Resource utilization analysis of the developed prototypes.
ean
} RMS Resource Available HR & BP Hypertension
0.18 :] Variance estimation classification
o1 6—- AE Utilization Utilization
1 LUT 53200 9407 11222
0.14 - LUTRAM 17400 330 330
0.12 FF 106 400 2062 2444
J - BRAM 140 7.50 7.50
0.10 1 x DSP 220 65 77
& 0.08 10 200 65 47
g | x BUFG 32 1 1
& 0.06
0.04 -
0.02
] Table 4
0.00 Comparison of our hypertension detection system with previous works.
_0'02_- Reference Features Implementation level Method Accuracy
T T T T Frederick et al. [14] - Software CNN 80.00%
Mean RMS Variance AE Martinez-Rios et al. [15] 22 Software SVM 71.42%
. . Sadad et al. [33] 30 Software Decision tree 99.50%
Fig. 9. Boxplot of RSE for different features. Evdochim et al. [34] 4 Software Quadratic SVM  72.90%
Present study 4 Hardware Linear regression 92.42%

331 segments, we have randomly selected 80% for training and 20%
segments for testing purposes as we mentioned before.

The system predicts heart rate to be within 4.3%, that is, the mean
absolute error + standard deviation is 3.17 + 2.79 beat per minute.
In terms of blood pressure, the corresponding figures are systolic blood
pressure to within 3.73% of the true values and diastolic blood pressure
to within 4.6% of the actual values. The MAE+SD for systolic and dias-
tolic blood pressure are 4.75 + 2.78 and 3.34 + 2.6, respectively. The
Bland-Altman plot for systolic blood pressure, diastolic blood pressure
and heart rate is shown in Fig. 10. When two separate measurement
methods have differing measurements, the differences can be seen
visually via a Bland-Altman plot. It is frequently used to evaluate how
well a new measurement tool or method compares to an existing tool or
method of measurement. It can be seen from the figure that for values
that are too high or low, the estimated values have higher differences
from the actual values. But the deviation is mostly within 5% for SBP
of 89 to 164 mmHg, DBP of 48 to 94 mmHg and heart rate of 60 to
92 bpm. The modified classifier for detecting hypertension was tested
and it correctly predicted the hypertension level of 61 PPG recordings
out of 66 PPG signals selected randomly. It predicted correctly the
hypertension level with an overall accuracy of 92.42%.

3.4. Resource and power analysis

The Xilinx ZedBoard utilizes Lookup Table (LUT), Lookup Table
Random Access Memory (LUTRAM), Block Random Access Memory

(BRAM), Input/Output (I0), Flipflop (FF), etc., to process the signal and
provide the output. The resource utilization for the designed prototype
is shown in Table 3.

The heart rate and blood pressure prediction system requires slightly
fewer resources than the other one. The use of LUTRAM, BRAM,
and Global Buffer (BUFG) are the same for both prototypes. The
hypertension classification system requires more LUT, FF and DSP for
functioning. The resource utilization proves the efficacy of ZedBoard
Zyngq for implementing our design in this FPGA.

Fig. 11 depicts the power utilization analysis of the heart rate
and blood pressure detection system. As the system requires fewer
resources, the total power consumption is lower for this system than
for the other system. The system requires maximum power for static
operation. The signal and logic blocks consume maximum power for
dynamic operation. The system requires a total of 0.338 W of power,
among which 0.108 W is for static operation and 0.230 W is for
dynamic operation.

The power utilization of the hypertension classification system is
shown in Fig. 12. The static power consumption is almost the same as
the previous design, being 0.109 W. The system consumes maximum
power for signal and logic operation. A power requirement of 0.255 W
for dynamic operation makes the total power consumption of the
system 0.364 W. The power utilization analysis proves our system to
be power efficient, consuming much less than even 0.4 W.
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Table 5
Comparison study of heart rate estimation.
Reference Subjects Implementation level Method MAE SD Error rate
Zhang et al. [16] 12 Software Signal processing & ML - - 5.00%
Reiss et al. [17] 15 Software CNN 7.65 bpm - -
Chang et al. [20] 12 recordings Software DCNN 1.61 bpm - -
Motin et al. [21] 23 recordings Software Weiner filtering 1.85 bpm - -
Islam et al. [35] 12 Software Time-frequency domain approach 1.16 bpm +1.74 -
Present study 153 Hardware Linear Regression 3.17 bpm +2.79 4.30%
Table 6
Comparison study of blood pressure estimation.
Reference Subjects Features Implementation level Method SBP (mmHg) DBP (mmHg)
MAE SD Error MAE SD Error
Zhang et al. [9] 19 9 Software SVM 11.64 +8.20 - 7.61 +6.78 -
Samimi et al. [10] 30 21 Software ANN 7.41 10.40 - 3.32 4.89 -
Slapnicar et al. [11] 41 13 Software Regression 857 - - 4.42 - -
Kurylyak et al. [36] - 21 Software ANN 3.80 +3.46 - 221 +2.09 -
Schlesinger et al. [37] - - Software CNN 5.95 - - 341 - -
Present study 153 Hardware Linear Regression 4.75  +2.78 3.73% 3.34 +2.60 4.60%
5.62% previous works are mostly done at the software level. Though our
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Fig. 11. Power Utilization for HR and BP estimation.
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Fig. 12. Power Utilization for hypertension classification.

3.5. Comparative study

There are some works on hypertension detection from PPG signals.
Their key performances are shown in Table 4. It can be seen that

implemented prototype is designed at the hardware level, it surpluses
most software-based works with an accuracy of 92.42%. Previous works
used mostly waveform features, while this study has utilized statistical
features. Also, our system uses fewer features than most of the previous
works.

Analysis of previous works on heart rate detection from PPG signal
is presented in Table 5. Also, Table 6 shows the comparative study
with previous works on blood pressure estimation from PPG. From
Tables 5 and 6, we can see most of the works have been done at the
software level. Although the systems developed by Wang et al. [12] and
Meddah et al. [22] are based on FPGA, the system performance analysis
is missing in those studies. Furthermore, most works considered few
subjects or recordings for their study. Our study considered a total of
331 PPG recordings from 153 subjects for heart rate and blood pressure
prediction. Our hardware prototype outperforms most of the previous
works regarding mean absolute error or prediction accuracy level, even
though they are software-based. Also, power and resource consumption
analysis prove the efficacy of our system.

4. Conclusions

Here, we present an FPGA-based hypertension detection and heart
rate and blood pressure estimation system. The hardware-based design
was implemented on a Xilinx system generator platform. The ZedBoard
Zynq-7000 ARM/FPGA Development Board we used as the demon-
strator was found to provide sufficient logical and signal processing
resources required for each system. The power consumption study
demonstrated the efficiency of the systems as a power-efficient device.
For developing the FPGA-based system, the preprocessor stage was de-
signed with a low-pass filter and the FFT of the preprocessor indicated
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the removal of undesired noises. Then the feature extraction subsystem
extracted 4 statistical features that were hardware-friendly. Linear
regression was used for the classifier design to predict heart rate and
blood pressure. The SBP and DBP estimation systems were combined
and extended using three comparators to classify the hypertension
detection system. The system detected hypertension with an accuracy
of 92.4% and estimated heart rate and blood pressure to within 5% of
actual values in a certain range, which is significant for a cuffless, non-
invasive measurement system. Although previous studies have reported
better performance at the software level, the present hardware-based
system achieved satisfactory results using fewer features and involving
more subjects. And while the system has the potential to extract addi-
tional features, the static power consumption is considered too high and
further work will be needed to improve the performance. Nevertheless,
there is scope for extending the systems to other applications, including
point-of-care systems, wearable devices and medical equipment.
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