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a b s t r a c t 

Ultrasound analysis is an instantaneous characterization tool to evaluate microstructural inhomogeneity. In this 

study, computational high-frequency ultrasound analysis was conducted to characterize histological features of 

malignant breast tissue. A high-frequency ultrasound signal was sent through the soft tissue model in a through- 

transmission manner. Histological features of the soft tissue were categorized as cell shape, nuclear pleomorphism, 

and malignant cell density. The design of experiment was created by combining various levels of histological fea- 

tures of tumor tissue. Transmitted ultrasound frequency spectrums from all combinations of histological features 

were analyzed in terms of peak density and mean peak to valley distance (MPVD) parameters. For the circular- 

shaped cell model, peak density and MPVD responded with increasing and decreasing trends respectively while 

the malignant histological features became gradually dominant. For the elliptical-shaped cell model, only peak 

density was effective to establish a relationship with the histological features. It was observed that added ma- 

lignant cells had more contribution to the response parameters than nuclear pleomorphism. Furthermore, the 

frequency spectrum patterns from all histological combinations were evaluated to find further information about 

malignant features. 
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Breast cancer which is also known as breast carcinoma is an uncon-
rolled growth of epithelial cells in the breast [1] . It is the second most
ommon cancer in women but can affect men as well [2] . Each time
ells divide inside breast ducts or lobules there is a chance of genetic
utation causing uncontrolled growth of cells resulting in tumor for-
ation [1] . To develop a characterization method for identifying the
alignancy/cancer, computational modeling can be an important tool

o understand the cellular level behavior under an external character-
zation system [ 3 , 4 ]. To model the breast tumor, it is very important
o know the difference between the tumor tissue and normal tissue. It
s understood that the presence of abnormally high-dense tissue in the
reast lobule may be a good indicator of a tumor [5] . This higher density
ormally occurs through an increasing percentage of the fibro glandular
issue in the breast [ 6 , 7 ]. Pathologists use a grading system to specify
he aggressiveness of tumor cells. The grading system consists of three
actors: (1) percentage of cancer cells formed into tubules, (2) differ-
nce in the nuclei size between healthy and malignant cells (nuclear
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leomorphism), and (3) rate of cancerous cell division [ 8 , 9 ]. Based on
hese factors, pathologists divide the tumor into three grades where the
igher the grade, the larger the difference in histological structures be-
ween cancerous and normal tissue. 

Different types of analysis were conducted to investigate the relation-
hip between histological features and ultrasound parameters. Empiri-
al analysis showed a strong correlation between histological changes
n properly characterized tissues and ultrasound scattering [ 10 , 11 ]. In
he case of experimental outcomes, empirical models were only rele-
ant for homogenous tissues [12] . For the analytical analysis, ultra-
ound scattering was averaged from the uniform distribution of cells
hich simplified the acoustic scattering [13] . Therefore, the effect of

tructural heterogeneity, wave-mode conversion, and multiple scatter-
ng was ignored in analytical analysis. To overcome these issues, the
terative multipole simulation method was utilized to accurately eval-
ate the ultrasound analysis parameters to detect the changes in his-
ological features [ 14 , 15 ]. In these studies, histological features like
he size of the cell and nucleus were evaluated. These simulation mod-
ls successfully evaluated multiple ultrasonic scattering in complex
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istological structures while taking wave mode propagation into ac-
ount. But the studies did not include viscoelasticity, and the cellu-
ar shape could have been more histologically accurate. The multiple
cattering was also limited to a range of cells. Furthermore, the trans-
ucer properties could also be closely approximated in the numerical
odels. 

Backscattered ultrasound measurements were mostly evaluated in
he above-mentioned studies [ 13 , 15–17 ]. Compared to the backscat-
ered ultrasound, in the forward scattering measurement, the ultrasound
ave has to travel half of the distance. In that case, the wave gets less
ttenuated. Therefore, the scattered quantitative ultrasound spectrum is
ore pronounced with details. The potential of the forward scattering

or histology-based evaluation is yet to be explored. In the case of eval-
ating backward scattering, the pulse-echo mode of ultrasound analy-
is was used wherein the case of the forward scattering, pitch-catch, or
hrough transmission ultrasound analysis mode was applied [ 18 , 19 ]. In
his research, the later mode was used to evaluate different spectral pa-
ameters from the forward scattering. During ultrasound propagation
hrough the medium, acoustic scattering is a very important factor con-
rolling the response parameters. When the acoustic wave collides with
nother medium with different sound velocities, it scatters in differ-
nt directions depending on the wavelength and medium structure size
20] . Based on the number of structures on the acoustic propagation
ath, there could be either single or multiple acoustic scattering [ 15 , 21 ].
t the microscopic histological level, multiple scattering occurs at two
ifferent levels. Firstly, the scattered wave from numerous cells causes
ne level of multiple scattering. Secondly, scattered waves from the dif-
erent intra-cellular interfaces (ECM-cytoplasm, and cytoplasm-nucleus)
nside a cell can cause another level of multiple scattering [15] . Based
n the frequency range, acoustic wave scattering can also be categorized
nto different levels [22] . In the case of breast tissue, multiple scatter-
ng was found very significant for the frequencies at approximately 4
Hz [23] . In that frequency level, diffuse ultrasound scattering occurs
here the scattered wave goes in all directions with equal magnitude.
ut at the high-frequency level, diffractive scattering occurs where wave
catters in all directions with different amplitude [18] . It was found
hat in diffractive scattering, the ultrasound response parameters were
trongly dependent on structure size, numbers, and propagation path
 20 , 24 ]. 

The goal of this study was to identify various histological features
f the tumor tissue through high-frequency ultrasound (22-41 MHz).
ompared to the experimental ultrasound measurement, computational
nalysis enables us to understand the acoustic-cell interaction at the
icroscopic level and utilize it to explain the results from ultrasound

nalysis. Therefore, high-frequency ultrasound analysis was conducted
omputationally to evaluate multiple forward acoustic scattering to de-
ect different histological features of cancerous tissue. Two important
actors from the histological grading were considered for the design
f experiment (DOE) of tissue modeling which was nuclear pleomor-
hism and malignant cell density. By increasing the level of these fac-
ors in the DOE, the increasing malignancy level in the tumor tissue
as depicted. The DOE also included two different cellular shapes- cir-

ular for initial approximation and elliptical for a close approxima-
ion. 22 to 41 MHz frequency range was used in this study to keep
imilarity with the previous research [ 20 , 25 ]. Different response pa-
ameters in the frequency domain were evaluated in this study. One
f the response parameters was spectral peak density that was found
ery responsive against microstructural changes [ 25 , 26 ] The average
agnitude difference between all the adjacent peaks and valleys was

lso analyzed which was called Mean Peak to Valley Distance (MPVD).
urthermore, the spectral pattern was analyzed to find out significant
eatures of the spectrum from various malignant features. It was ob-
erved that with cellular structures tending towards the cancerous level,
eak density increased and MPVD value decreased. Also, the malig-
ant cell density contributed more to the multiple scattering than the
leomorphism. 
2 
esign of experiment 

In the case of nuclear pleomorphism, a total of 4 levels of nuclear
iameter were used. The nuclear diameter of the healthy cell was kept
s 10 μm. To delineate the gradual severity of the cancerous stage, the
uclear diameter was increased by 20% (12 μm), 40% (14 μm), and
0% (16 μm) in the tumor tissue model. For the initial stage, the num-
er of healthy epithelial cells was kept as 750. In the case of increas-
ng malignant cell density, the number of added malignant cells in nor-
al tissue was 375 and 750. Therefore, with increasing cellular den-

ity, the total number of cells became 1125, and 1500 respectively. Fur-
hermore, in previous research, the cells were approximated as spher-
cal shaped where it was found that a closer approximation could be
chieved through spheroidal cellular shape [15] . Therefore, the cellular
hape was also considered as another factor for the DOE. Since simu-
ations were conducted in two-dimensional models, the spherical and
pheroidal cellular shapes were considered circular and elliptical, re-
pectively. Another approximation was considered that the cell cross-
ections were all taken from their center plane. Thus, the area of the
ell and nucleus was kept uniform in all DOE combinations. Further-
ore, to model elliptical cells, the direction of the major and minor axis

f the ellipse became an important factor to consider. Since, in the can-
erous stage, the malignant cells were arranged loosely from each other,
he elliptical cells’ major and minor axis could be in any direction inside
he tissue. In this study, only two orientations of the elliptical cells were
onsidered (horizontal and vertical). These orientations were equally
istributed between normal and malignant cells. 

In summary, the DOE consisted of 3 factors where the factors- nu-
lear pleomorphism, malignant cell density, and cellular shape consisted
f 4, 2, and 2 levels, respectively. Therefore, a total of 24 combinations
ere created for the computational analysis. 

Table 1 shows all the combinations that were analyzed in this study.
rom this table, combination 1 depicted the healthy breast tissue, and
ombination 2 and 14 only showed increased cell density with no pleo-
orphism. Thus, combinations 2 and 14 were depicted as dense breast

issues with no malignancy. Combinations 4, 7, and 10 from the circular
hape model were similar to combination 1. Combinations 16, 19, and
2 from the elliptical cell model were similar to combination 13. In both
ases, since there were no added malignant cells, nuclear pleomorphism
as not considered. But these combinations were kept in this table to
aintain consistency of the DOE. 

For characterizing these different combinations, two response pa-
ameters were analyzed in this study. One of the response parameters
as the ultrasound peak density of the frequency spectrum. As the name

uggests, peak density is the total amount of peaks and valleys in the
requency domain spectrum of the transmitted ultrasound signal (pitch-
atch mode). The second response parameter was Mean Peak to Valley
istance (MPVD). MPVD parameter was simply calculated from the fre-
uency spectrum by calculating the average value of all the adjacent
eak to valley distances [22] . Furthermore, the spectral pattern (large
eaks or valleys, jaggedness, etc.) was analyzed to extract detailed fre-
uency information for evaluating tissue microstructure at different ma-
ignancy levels. 

odel description 

In the model geometry, the cells were generated randomly for both
ormal and malignant cases. Thus, the model depicted loosely bonded
ells inside the tissue. The model consisted of extracellular matrix, cyto-
lasm, and nucleus. Fig. 1 depicts the model geometry for combinations
2 and 24 from the DOE. Both combinations had normal cells as well
s malignant cells where the cellular shape was circular and elliptical,
espectively. The malignant cells were evident in the model geometry
s they had a larger nucleus (60% pleomorphism). In the case of the el-
iptical geometry, the cells were arranged in two different orientations
ased on their major and minor axis. An ultrasound plane wave was
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Table 1 

Design of experiment (DOE) 

Comb. no. Cell shape Increase in malignant 

nucleus diameter (%) 

Added number of 

malignant cells 

Comb. no. Cell shape Increase in malignant 

nucleus diameter (%) 

Added number of 

malignant cells 

1 Circular 0 0 13 Elliptical 0 0 

2 Circular 0 375 14 Elliptical 0 375 

3 Circular 0 750 15 Elliptical 0 750 

4 Circular 20 0 16 Elliptical 20 0 

5 Circular 20 375 17 Elliptical 20 375 

6 Circular 20 750 18 Elliptical 20 375 

7 Circular 40 0 19 Elliptical 40 0 

8 Circular 40 375 20 Elliptical 40 375 

9 Circular 40 750 21 Elliptical 40 750 

10 Circular 60 0 22 Elliptical 60 0 

11 Circular 60 375 23 Elliptical 60 375 

12 Circular 60 750 24 Elliptical 60 750 

Fig. 1. Model geometry of (a) combination 12 and (b) combination 24 from the DOE 
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𝑘  
ent in the positive x-direction. For smooth acoustic wave propagation
hrough the tissue boundary, a perfectly matched layer (PML) was in-
roduced in the model. The 2D model area was 1300 μm x 1300 μm in
imension. In the case of the circular-shaped cellular model, the cell di-
meter was 25 μm [ 27 , 28 ]. For the elliptical-shaped cellular model, the
ajor and minor axis lengths of the cell were approximated 25 μm and
6 μm respectively. 

imulation physics 

Previously, computational modeling was conducted by approximat-
ng the ECM, nucleus, and cytoplasm as both solid and fluid [15] . Since
he goal of this research was to explore the multiple scattering and dif-
erent geometric features of the cell, all histological features were con-
3 
idered fluid. COMSOL Multiphysics v5.6 software was used to conduct
ll the simulations. In the fluid medium, the acoustic wave propagation
ollows the Helmholtz equation shown in Eq. (1) . The equation provides
he acoustic pressure distribution as a function of frequency inside the
edium. 

 . 

( 

− 

1 
𝜌𝑐 

(
∇ 𝑝 𝑡 − 𝒒 𝐝 

)) 

− 

𝑘 2 eq 

𝜌𝑐 
𝑝 𝑡 = 𝑄 𝑚 (1) 

In fluid, for the speed of sound 𝑐 𝑐 , attenuation coefficient 𝛼, and
requency 𝑓 , the equivalent wave number, 𝑘 𝑒𝑞 can be shown as 

 

2 
𝑒𝑞 = 

( 

2 𝜋𝑓 
𝑐 

− 𝑖 ln ( 10 ) 𝛼
20 

) 2 
− 𝑘 2 𝑧 = 𝑘 2 − 𝑘 2 𝑧 (2)
𝑐 
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Table 2 

Material properties 

ECM Cytoplasm Nucleus 

Density, 𝜌𝑐 ( 𝑘𝑔 𝑚 −3 ) 1060 998 1430 

Longitudinal wave speed, 𝑐 𝑐 ( 𝑚 𝑠 −1 ) 1570 1483 1509 

Attenuation coefficient, 𝛼( 𝑑𝐵 𝑚 −1 𝑀 𝐻 𝑧 −1 ) 70 70 70 

Fig. 2. Background pressure distribution over the input frequency range 
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In this model, out of plane wave number 𝑘 𝑧 is set to zero. Monopole
nd dipole source term 𝑄 𝑚 and 𝒒 𝐝 are both zero in this system. 𝜌𝑐 is the
uid density. The total pressure, 𝑝 𝑡 is the summation of the background
ressure field ( 𝑝 𝑏 ) and scattered pressure field ( 𝑝 𝑠 ) . In the model, the
ackground pressure field is expressed as wave propagation in 𝑒 𝑥 di-
ection defined as 𝑝 𝑏 = 𝑝 0 𝑒 

− 𝑖𝑘𝑥 . Here 𝑘 is the wavenumber which is the
unction of frequency ( 𝑓 ) shown in Eq. (2) . 

Material properties in ECM, cytoplasm, and nucleus are included in
able 2 [ 29 , 30 ]. 

The simulation was conducted for a high-frequency range from 22 to
1 MHz mimicking a high-frequency transducer with frequency band-
idth. In general, ultrasound transducers send pressure waves for a

requency range where the pressure magnitude is distributed as a bell-
haped curve and the maximum pressure magnitude is found at the cen-
er frequency. Therefore, the input background pressure for this model
as distributed in a bell-shaped pattern over the frequency range and

he maximum pressure amplitude was kept at 31.5 MHz ( Fig. 2 ). Fur-
hermore, the frequency bandwidth was selected at 50% of the max-
mum amplitude. Therefore, pressure at 31.5 MHz was selected as 1
a and at both 22 and 41 MHz, it was kept 0.5 Pa (50% of max
mplitude). 

The frequency step size was 100 kHz for this model. Therefore,
rom the 22 to 41 MHz range, the model calculated scattered pres-
ure for 190 frequency points. To mimic the pitch-catch method,
he average scattered pressure for each frequency point was mea-
ured from the back wall of the model geometry shown in Fig. 1 .
hen the frequency spectrum was generated by accumulating all the
cattered pressure in the frequency range. The free triangular mesh
as used in the tissue geometry and the mapped mesh was used in

he PML region. Mesh element size was selected as one-sixth of the
avelength. 

To calculate the peak density, the number of peaks and valleys were
ounted from the frequency spectrum [17] . For calculating the MPVD
arameter, the average pressure difference between all adjacent peaks
nd valleys was measured. 
4 
esults 

Fig. 3 represents the peak density data from all the histological fea-
ure combinations in the cellular cell and elliptical cell model. In both
odels, it was evident that the peak density followed an overall in-

reasing pattern with the increased number of malignant cells as well
s increased nucleus size (pleomorphism). In the circular cell model
 Fig. 3 a), the trend was more evident compared to the elliptical cell
odel ( Fig. 3 b). The possible reason behind that could be the uniform

ell area surrounding the nucleus in the circular model. This uniform
ell shape created a homogeneous intra-cellular scattering compared to
he elliptical cell model. 

In the case of the MPVD result, an overall decreasing trend with in-
reasing histological features (cell density, pleomorphism) was observed
nly for the circular cell model ( Fig. 4 a). The elliptical cell model failed
o create a general correlation between MPVD and the histological fea-
ures ( Fig. 4 b). 

The spectral patterns were also analyzed in this research to extract
urther information about different malignancy levels. For both cellular
nd elliptical models, the frequency spectrums were divided into two
roups . Group 1 consisted of the signals acquired from 375 added ma-
ignant cells ( Fig. 5 a and Fig. 6 a), and group 2 consisted of the signals
cquired from 750 added malignant cells ( Fig. 5 b and Fig. 6 b). In both
roups, the frequency spectrum from normal/healthy tissue (without
alignant cells and pleomorphism) was added as a reference to visual-

ze the change in spectrums for different malignant grades. In the case
f the circular cell model, from Fig. 5 a, it was evident that all the spec-
rums with 375 malignant cells followed the overall bell-shaped pattern
f the input background pressure. For the healthy tissue spectrum, a
arge peak between 30 to 35 MHz region was observed. The pressure
agnitude differences between that peak to its adjacent valleys were

pproximately 1 Pa. A similar peak with a slightly increased pressure
agnitude of 1.06 Pa was seen when 375 cells were added with no
leomorphism (dense healthy tissue). But with increasing nuclear pleo-
orphism in the 375 malignant cells, the peak started to disappear. And
nally, with 60% pleomorphism, the peak completely disappeared from
he malignant tissue spectrum. In the case of the 750 added malignant
ells ( Fig. 5 b), this pattern was more pronounced. In the case of 750
dded cells, for the dense healthy tissue, the peak between 30-35 MHz
egion had a much higher amplitude than the healthy tissue spectrum.
lthough it was not a smooth peak, the envelope of the spectrum in that
egion depicted a peak with a pressure magnitude of 1.65 Pa. But the
eak started to vanish and showed random spectrum jaggedness with
ncreased nucleus size. Finally, similar to the 375 malignant cells, the
eak completely vanished with 60% increased nucleus size in malig-
ant tissue. Overall, in both 375 and 750 malignant cells, the jagged-
ess (fluctuation in the pressure magnitude) in the frequency spectrum
tarted to increase with increasing nucleus size. 

In the case of the elliptical cell shown in Fig. 6 , the spectrums with
75 and 750 cells followed an overall similar pattern to the circular cell.
ne major difference compared to the circular model was that there
ere two distinguished peaks (0.4 Pa and 0.3 Pa) instead of one in the
ealthy tissue spectrum. Similar to the circular model, the peak mag-
itude for the dense healthy tissue (375 cells) increased (0.95 Pa and
.45 Pa). But in the case of dense healthy tissue with 750 additional
ormal cells, the peaks merged into one with an increasing magnitude
f 0.8 Pa. The peaks were still visible in the case of low pleomorphism
20%) but the jaggedness started to become visible. Then similar to the
ircular cell model, these peaks gradually disappeared with increased
leomorphism, and irregular jaggedness was observed in their pattern.
nother difference that was spotted in the elliptical cell spectrums was

he overall scattered pressure amplitude. All the spectrums with added
alignant cells had a higher amplitude level compared to the healthy

issue spectrum. 
From the spectral pattern, it was observed that although the nuclear

leomorphism had less of an effect on the response parameters (peak
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Fig. 3. Peak density for (a) circular cell model, (b) elliptical cell model 

Fig. 4. MPVD for (a) circular cell model, (b) elliptical cell model 

Fig. 5. Circular cell: frequency spectrum of the normal histological spectrum with (a) spectrums for 375 added malignant cells at all pleomorphism levels, (b) 

spectrums for 750 added malignant cells at all pleomorphism levels 

5 
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Fig. 6. Elliptical cell: frequency spectrum of the normal histological spectrum with (a) spectrums for 375 added malignant cells at all pleomorphism levels, (b) 

spectrums for 750 added malignant cells at all pleomorphism levels 
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ensity and MPVD), it certainly affected the frequency spectrum. There-
ore, by studying the frequency spectrum, information about nuclear
leomorphism can be extracted. 

iscussion 

While using quantitative ultrasound parameters to characterize tu-
or microstructure, it was found that peak density was a more effective
arameter than MPVD. In Fig. 3 , it was observed that for both circular
nd elliptical cell models, the increase in peak density was more evident
n the “added malignant cell ” axis. Added malignant cell or increasing
alignant cell density in this study was nothing but an increasing num-

er of scatterers. The QUS parameter peak density is dependent on the
mount of multiple acoustic scattering that occurs inside the tissue mi-
rostructure. From a previous study, it was found that multiple scatter-
ng occurring from the added number of scatters had a major effect on
eak density [20] . Therefore, this trend of peak density data made per-
ect sense in this case. Also, it was understood that the aggressiveness
f tumors in terms of the mitotic rate will be more identifiable through
eak density data. 

In terms of the MPVD data, a decreasing trend was observed with
ncreasing histological feature levels. MPVD variation depends on the
eak to valley pressure difference in the frequency spectrum. Therefore,
f the spectrum patterns remain similar while the peak to valley pres-
ure magnitude varies, the MPVD trend could be more conclusive. In
his study, since the cells were randomly dispersed, the scattering be-
avior was fully random. Even though the spectrums in all cases had a
imilarity at a certain level, the pressure magnitude was too random to
rovide a meaningful MPVD pattern. In the case of the circular cell, the
cattered wavefront from the cells was consistent in all directions com-
ared to the elliptical cells because of their geometry. In the horizontal
lliptical cell, the forward scattering was more dominant compared to
he vertical elliptical cell. Therefore, the randomness in scattering from
he elliptical cell was more prominent compared to the circular cell.
his scattering randomness might be optimized, and the computational
odel would be more realistic if the elliptical cell orientation was ran-
om instead of only being horizontal and vertical. The only time MPVD
howed a consistent decreasing trend, was for the added malignant cell
arameter in the circular cell model. Although having random cell distri-
ution, the shape consistency helped to create a better MPVD response
n that case. It indicated that with increased scattering due to excess
alignant cells, the peak to valley pressure magnitude decreased over

he frequency bandwidth. Overall, for random cell dispersion, MPVD
as not an effective response parameter to analyze. Thus, it can be said
6 
hat while using quantitative ultrasound for tumor grading, the cellular
hape will also be the key factor. 

To reinforce the peak density results, the spectral comparison was
onducted in this study. Spectral features like center frequency pressure
agnitude (center peak) could be a supporting indicator of whether the
alignancy has started to occur inside the tissue sample. It was more

f a qualitative measurement rather than a quantitative measurement.
he authors could not perform a quantitative analysis of the spectral
omparison because of the randomness of the spectral shape of the ma-
ignant tumor in the center frequency region. 

In a previous study, it was found that among different quantitative
ltrasound parameters, peak density was comparatively more sensitive
owards the material microstructure [31] . This study showed the fea-
ibility of quantitative ultrasound peak density in detecting tissue mi-
rostructure through the evaluation of acoustic-cell interactions. A rel-
vant application of this method can be intraoperative surgical mar-
in analysis during breast conservation surgery [32] . Labor intensive
ost-operative margin tissue analysis increases the reoperation rate as
ell as local recurrence rate [33–35] . Developing an ultrasound device
ased on this study can instantaneously provide information regarding
he presence of malignant cells inside margin tissue. This information
ill help the surgeons to take the necessary decisions to proceed with

urther excisions during the first surgery. In addition to characterizing
he breast tumor, this method can be utilized in various diagnostic ap-
lications where the cellular microstructure needs to be analyzed. In
erms of cancer detection, this method can be implemented for prostate
ancer detection, metastasis detection in lymph node tissues, differen-
iating between melanoma and non-melanoma skin cancers as well as
etecting early skin cancers [ 36 , 37 ]. In general, the authors believe that
his method has the feasibility to be utilized for any biopsy tissue sam-
le characterization for faster results. These computational results also
eed to be experimentally validated to support these remarks. 

onclusion 

High-frequency ultrasound (22-41 MHz) analysis was conducted to
dentify the mitotic rate and nuclear pleomorphism level in breast tu-
or tissue in a finite element analysis study. Mitotic rate was mimicked

y added malignant cells and pleiomorphism was mimicked by increas-
ng nucleus size in the model geometry of breast tissue. Malignant cell
ensity and nucleus size was varied at multiple levels for the ultrasound
easurement. The circular and elliptical cellular shapes were used for

oth histological features. Ultrasound peak density and MPVD param-
ters were evaluated to detect the different combinations of malignant
eatures. Peak density showed a strong increasing pattern against the in-
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reasing number of malignant cells and malignant nucleus size for both
ellular shapes. In contrast to that, the MPVD parameter responded with
 decreasing trend against the histological features only for the circular
ell shape. For the elliptical cell shape, MPVD failed to provide a conclu-
ive trend. Among the two histological features, malignant cell density
as found dominant against the response parameters. The spectral pat-

erns were also evaluated for all malignant feature combinations. The
aggedness increased in the frequency spectrum with increasing feature
evels. A large peak was observed at the center region (30-35 MHz) of
he frequency range for the normal tissue and primary malignant tissue.
he center peak disappeared with increasing nuclear pleomorphism. By
tudying the spectral pattern, pleomorphism information could poten-
ially be extracted. Overall, spectral variation in the frequency level
howed a distinguishable pattern with different tumor grades. 
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