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A B S T R A C T   

Background: Manual contouring is time-consuming and subjective. Thus, auto-segmentation methods, which can 
be deployed in the existing workflow, are needed. The objective of this study was to assess the feasibility of 
Limbus AI and AI Rad Companion auto-contours for head and neck treatment planning. 
Methods: Head and neck patients treated with RapidArc were selected retrospectively. The manual contours on 
the planning CT were used as reference. Geometric analysis of the auto-contours was performed using several 
evaluation metrics such as the Dice Similarity Coefficient (DSC) and the Mean Distance to Conformity (MDC). 
Dosimetric analysis was performed by recalculating the original plan on the auto-contours and comparing Dose 
Volume Histogram (DVH) metrics to the original plan. 
Results and discussion: Both AI tools tend to underestimate the volumes of brainstem and cord. For brainstem and 
parotids, median DSC values were ≥ 0.8. For all auto-contours, median MDC values were ~ 3–6 mm. Median 
differences were found of up to ±7 % in DVH points on the auto-contours relative to the planning CT contours, 
but these were not statistically-significant. 
Conclusion: The auto-contours could be used as a starting point to assist the clinician with the manual contouring 
of structures on the planning and re-scanning planning CT.   

Introduction 

According to Cancer Research UK [1], there are around 12,400 new 
head and neck cancer cases in the UK every year. Radiotherapy alone, or 
in combination with other treatments such as surgery or chemotherapy, 
is used as part of the primary cancer treatment. Radiotherapy treatment 
planning requires delineation of target volumes and organs at risk 
(OARs). In current practice, contouring is performed manually by the 
clinician, which is tedious, time-consuming, and prone to inter- and 
intra-observer variability [2]. This reduces clinicians’ availability for 
other tasks and can delay the start of patients’ treatments leading to 
poorer tumour control probability, and for some patients, reduced 
probability of survival. Thus, auto-segmentation methods, which can be 
deployed in the existing workflow, are needed in order to improve 
contouring consistency, optimise patient treatment pathways and 
improve patient outcomes, whilst enabling effective use of staff 
resources. 

Furthermore, radiotherapy treatment planning of head and neck can 
be challenging. This is because there can be significant changes in 

patient anatomy during the course of radiotherapy treatment [3]. These 
changes are mainly due to patient weight loss and tumour volume 
shrinkage, which can result in loose immobilization devices, increasing 
the patient set-up uncertainty [4]. Several studies have shown that the 
GTV (Gross Tumour Volume) can shrink by 1.8–3.9 % per day [5]. 
Similarly, the parotid glands can experience significant volume reduc
tion; various studies have shown that they can shrink by 0.6–1.1 % per 
day [6,7]. These changes, if not taken into account properly, can lead to 
insufficient dose coverage of the target volumes and potential overdose 
to healthy tissue and organs at risk. Re-planning, including 
re-contouring of target volumes and organs at risk, may be required. 
Auto-contouring could potentially speed up plan adaptation which 
would be a great asset in radiotherapy. 

Atlas-based auto-segmentation has dominated commercial packages, 
but is now being superseded by deep-learning methods [2]. Limbus AI 
and AI Rad Companion Organs RT are commercial solutions for 
auto-contouring based on deep learning. The objective of this study was 
to assess the feasibility of AI auto-contours generated by Limbus Contour 
version 1.5.0 (Limbus AI Inc., Canada) and AI Rad Companion Organs 
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RT version VA31 (Siemens Healthineers, Siemens Healthcare GmbH., 
Germany) for head and neck radiotherapy treatment planning. As part of 
the study, a geometric and dosimetric analysis of the auto-contours 
generated by both AI tools were performed. It is worth noting that a 
comparison between the two AI tools was beyond the scope of this study. 

Methods 

Ten head and neck patients, with no significant imaging artifacts, 
treated with RapidArc (65 Gy and 54 Gy in 30 fractions) were selected 
retrospectively. All the plans had bilateral nodal irradiation. Each pa
tient had a planning CT with manual contours of target volumes and 
organs at risk. CT images were acquired with a Siemens SOMATOM 
Confidence scanner (Siemens Healthineers, Siemens Healthcare GmbH., 
Germany) and a slice thickness of 0.1 cm. The manual contours on the 
planning CT were used as reference. Inter-observer variability was 
eliminated since all the delineations were performed by the same clin
ical oncologist. It was not possible to eliminate intra-observer variability 
and the potential bias in the reference contours being from the single 
clinician. 

Geometric analysis 

The aim of the geometric analysis was to evaluate the accuracy of AI 
auto-contours for head and neck treatment planning. The geometric 
analysis (Fig. 1) was carried out using the contour comparison module of 
ImSimQA version 4.2 (Oncology Systems Limited, UK) 

Metrics 

Geometric analysis of the auto-contours was performed using several 
evaluation metrics such as the Dice Similarity Coefficient (DSC), the 
Mean Distance to Conformity (MDC) in mm, the Target Registration 
Error (TRE) in mm, the Inclusiveness Index and the Sensitivity Index. 

The DSC is a measure of spatial overlap. 

DSC =
2(A ∩ B)

A + B
(1) 

Where A and B are the evaluation and the reference contours 
respectively. 

The MDC is defined as the mean distance of each outlying voxel from 
the reference contour to the evaluation contour. 

MDC =
1

N(A)
∑N(A)

i=0
d(Ai,Bi) (2) 

Where d(Ai,Bi) is the distance from point i on surface A to the closest 
point on surface B, and N(A) is the total number of surface points on 
contour A [8,9]. 

The Target Registration Error (TRE) is defined as the average re
sidual error between the identified points on the evaluation volume of 
interest and the points identified of the reference volume of interest. 

The Sensitivity Index (overlapping index) measures the probability 
that the evaluation contours match their corresponding reference. 

Sens. Index =
A ∩ B

B
(3) 

Where A and B are the evaluation and the reference contours 
respectively [10]. 

The Inclusiveness Index (specificity) measures the probability that 
a voxel of the evaluation contour is really a voxel of the reference 
contour. 

Incl. Index =
A ∩ B

A
(4) 

Where A and B are the evaluation and the reference contours 
respectively [10]. 

Dosimetric analysis 

The aim of the dosimetric analysis was to determine the dosimetric 
impact of using auto-contours instead of the manual contours. Dosi
metric analysis (Fig. 2) was performed by re-calculating the original 
plan on the auto-contours and comparing Dose Volume Histogram 
(DVH) metrics to the original plan. 

The original plans were generated by experienced dosimetrists using 
standard templates in Eclipse treatment planning system. All plans were 
checked by a senior radiotherapy physicist and in accordance with 
departmental protocols. 

The Analytical Anisotropic Algorithm (AAA) version 16.1.0 was used 
for the dose calculation. 

In Eclipse treatment planning system version 16 (Varian A Siemens 
Healthineers Company, Siemens Healthcare GmbH., Germany), a new 
course was created. The original treatment plan was copied and pasted, 
assigning the new structure set that contains the auto contours. The new 
treatment plan was re-calculated with the same settings, including the 
same number of monitor units (MUs) as in the original plan. 

For the dosimetric analysis, the change in plan metrics on the 
manually-delineated contours by the clinician (reference) were 
compared against the change in plan metrics observed when using auto- 
contours. To assess the dose to the left and right parotid, their 

Fig. 1. Overview of the study design for the geometric analysis.  
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corresponding mean doses were recorded. For the brainstem and the 
spinal cord, which are serial organs at risk, the dose to 0.1cc (D0.1cc) 
and the maximum dose (Dmax) were determined. This is in accordance 
with departmental clinical guidelines. 

It is worth acknowledging that there is a limitation in our method. 
The dosimetric difference has been quantified by recalculating the 
original plan, with fixed MU, on the auto-contoured set. A more mean
ingful comparison would have been to optimise plans on the auto- 
contour structure set and then recalculate these plans, with fixed MU, 
on the original structure set for comparison. This would have captured 
any optimisation compromises as a result of the auto-contours by 
comparing dosimetrically to the original structure set, which is consid
ered the reference. The auto-contours would either result in differently 
optimised plans or be edited by the clinician to more closely match the 
original structure set. This might be investigated as part of future work. 

Results 

Geometric analysis 

Both AI tools tend to underestimate the volumes of brainstem and 
cord when comparing the auto-contours to their corresponding manual 
delineations on the original planning CT (Table 1, Table 2). For brain
stem and parotids, median DSC values were ≥ 0.8. For all auto-contours, 
median MDC values and median TRE values were ~ 3–6 mm and ~1–4 
mm respectively. Except for the cord, the median Sensitivity and 

Inclusiveness Indexes values were ≥ 0.7. 
The best geometric results were attained by the brainstem, whereas 

the poorest geometric results were found for the cord. For example, in 
one patient, MDC values for spinal cord of ~64 mm (Table 1) between 
the auto-contour and the manual contour were recorded. It was noted 
that the AI tool outlines the entire spinal cord whilst the manual contour 
only outlines the structure within the field size. 

Qualitative analysis of AI auto-contours by oncologists was beyond 
the scope of this study. However, clinicians showed a preference to
wards editing auto-contours, if necessary, rather than outlining from 
scratch, saving overall contouring time. Assessing the effect on con
touring time is not stated in the aim of the study. This might be inves
tigated as part of future work. 

Dosimetric analysis 

Median differences were found of up to ±7 % in DVH points on the 
auto-contours relative to the planning CT contours (Table 3). 

Statistical analysis of the plan evaluation metrics was performed 
using IBM SPSS Statistics Version 27. A Wilcoxon Signed Rank test be
tween the plans was carried out to determine whether the differences in 
DVH points for the different structures relative to the original plan were 
statistically-significant. The statistical significance was set at 0.05. 

There was no statistically-significant difference in the DVH points of 
OARs between the plans. 

The calculated doses, derived from re-calculation on the AI auto- 
contours, tend to be higher for the parotids and lower for the 

Fig. 2. Overview of the study design for the dosimetric analysis.  

Table 1 
Geometric analysis of Limbus AI. Results are expressed as median and range 
between brackets.  

Structure DSC MDC 
(mm) 

TRE 
(mm) 

Vol. Diff. 
(%) 

Sens. 
Index 

Incl. 
Index 

Brainstem 0.87 
(0.82, 
0.92) 

3.34 
(2.52, 
4.38) 

1.00 
(0.35, 
2.06) 

− 8.06 
(− 20.73, 
0.84) 

0.84 
(0.73, 
0.92) 

0.92 
(0.89, 
0.92) 

Spinal 
Cord 

0.71 
(0.57, 
0.88) 

2.71 
(2.14, 
63.67) 

1.06 
(0.57, 
63.86) 

− 18.31 
(− 43.99, 
5.22) 

0.57 
(0.53, 
0.91) 

0.86 
(0.63, 
0.99) 

Left 
Parotid 

0.87 
(0.79, 
0.88) 

4.19 
(3.66, 
5.30) 

1.64 
(1.21, 
2.38) 

3.94 
(1.27, 
10.25) 

0.88 
(0.79, 
0.92) 

0.83 
(0.78, 
0.86) 

Right 
Parotid 

0.85 
(0.62, 
0.86) 

4.36 
(3.33, 
9.14) 

1.62 
(0.86, 
7.19) 

− 3.93 
(− 16.31, 
10.11) 

0.83 
(0.57, 
0.91) 

0.85 
(0.67, 
0.87)   

Table 2 
Geometric analysis of AI Rad Companion Organs RT. Results are expressed as 
median and range between brackets.  

Structure DSC MDC 
(mm) 

TRE 
(mm) 

Vol. Diff. 
(%) 

Sens. 
Index 

Incl. 
Index 

Brainstem 0.83 
(0.78, 
0.91) 

3.96 
(3.18, 
6.39) 

1.67 
(1.02, 
7.53) 

− 20.42 
(− 28, 
− 8.36) 

0.71 
(0.70, 
0.87) 

0.95 
(0.88, 
0.99) 

Spinal 
Cord 

0.54 
(0.34, 
0.79) 

3.37 
(2.98, 
21.19) 

3.62 
(0.67, 
19.61) 

− 21.02 
(− 63.2, 
53.43) 

0.46 
(0.36, 
0.71) 

0.89 
(0.30, 
1.00) 

Left 
Parotid 

0.80 
0.69, 
0.84) 

5.37 
(4.65, 
8.95) 

3.04 
(1.42, 
8.31) 

31.68 
(18.92, 
45.4) 

0.92 
(0.83, 
0.96) 

0.71 
(0.58, 
0.77) 

Right 
Parotid 

0.79 
(0.59, 
0.83) 

5.59 
(3.77, 
12.56) 

3.31 
(2.11, 
7.92) 

15.74 
(− 6.51, 
28.71) 

0.85 
(0.64, 
0.93) 

0.74 
(0.55, 
0.80)  
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brainstem and cord with reference to the original plan. However, it was 
found that these changes were not statistically significant (p- 
Value>0.05). 

Discussion 

In our study, we performed a geometric and dosimetric analysis of 
auto-contours generated by Limbus AI and AI-Rad Companion Organs 
RT for head and neck. 

The evaluation of auto-contouring algorithms is commonly per
formed using geometric metrics [11]. Although various evaluation 
metrics have been proposed in the literature, there is no widely accepted 
method for geometrical comparison. Hanna et al. [12] carried out a 
review of comparison methods for geometric analysis of radiotherapy 
volumes and recommends using at least a volume assessment in addition 
to a metric to assess positional displacement such as the centre of mass 
shift. There is no single metric that provides a full description of the 
change [13]. 

Available algorithms in commercial software packages are mainly 
atlas-based methods. However, these auto-contours require significant 
editing. Recently, artificial intelligence approaches based on deep 
learning convolutional neural networks are gaining popularity. There is 
evidence in the literature [14–18] that suggests that deep-learning 
auto-contours have better accuracy when compared to manual con
tours than those produced by model-based or atlas-based approaches. 
Deep learning auto-contouring has the potential to reduce the clinical 
burden by reducing the time spent on producing acceptable contours. 

Ibragomov et al. [19] proposed the first convolutional neural 
network method for delineation of OARs for head and neck cancer. The 
method showed more accurate results than atlas-based models. More
over, Nikolov et al. [20] and Zhu et al. [21] investigated the use and 
performance of a 3D U-NET convolutional neural network (DeepMind 
and AnatomyNet respectively) for whole volume delineation of head 
and neck cancer with promising results. However, these studies did not 
evaluate the benefits of adopting these deep learning methods into the 
clinical workflow. 

Van der Veen et al. [18] studied the benefits of a deep learning 
method (DeepVoxNet) for delineation of organs at risk in head and neck 
cancer in terms of geometric accuracy, efficiency and consistency 
compared to manual delineation. The accuracy of the automated 
delineation method was assessed for each OAR using the Dice Similarity 
Coefficient (DSC) and the Average Symmetric Surface Distance (ASSD). 
The efficiency of the automated delineation method was quantified by 
comparing the time needed for manual delineation to the time needed 
for correction of the auto-contours. The method showed average delin
eation time savings of ~33 % when auto-contours were edited instead of 
outlining from scratch. In addition, the method showed an increase in 
consistency compared to manual delineation. The study concluded the 
benefits could justify its implementation in clinical practice. 

In a recent study, D’Aviero et al. [22] performed a geometric analysis 
of Limbus AI for head and neck; the auto-contours were compared with 
manual contours using DSC and Hausdorff Distance. The study found 
that Limbus AI provided acceptable head and neck OARs delineations. 
Their results suggested that Limbus AI could be considered as a starting 
point for review and edited if necessary, optimising workload and 

resources in radiotherapy departments. This is in line with our geometric 
analysis. 

In another study by Wong et al. [23], time savings were estimated as 
at least 26 min for head and neck. As suggested by D’Aviero et al. [21] 
and Wong et al. [22] auto-contours could be used as a helpful tool to 
assist the clinician with the manual contouring of structures on the 
planning and re-scanning planning CT. 

For the purpose of research, Microsoft InnerEye developed by 
Microsoft Research Lab in Cambridge is an open-source AI toolkit to 
train models on medical images. InnerEye is based on a machine 
learning model that uses a 3D convolutional neural network for auto
mated delineation which has already been applied to train head and 
neck and prostate datasets to generate contours of OARs from CT im
ages. Oktay et al. [24] performed a study on 242 head and neck and 519 
male pelvic CT image datasets acquired for radiotherapy treatment at 8 
different cancer centres. The head and neck model and the prostate 
model were trained on a subset of dataset to automatically outline OARs. 
The study found that Microsoft InnerEye contours achieved accuracy 
within inter-observer expert variability. Statistical agreement was ob
tained for 13 out of 15 OARs. Moreover, Oktay et al. used ten head and 
neck patients and found the mean clinician time to be ~87 min for 
manual contouring compared with ~5 min for auto-contours, repre
senting a reduction in mean clinician time of ~93 %. 

Although in the literature, much attention has been justifiably 
focused on the geometrical accuracy of the contours, the dosimetric 
implications have not been frequently studied. An analysis based on 
dosimetric parameters can be more relevant in clinical practice [11]. As 
highlighted by Pukala et al. [25], one limitation shared by all evaluation 
metrics is the disconnect between the quantification of the geometrical 
accuracy and the effect that this has on the dose distribution. Voet et al. 
[26] and Tsuji et al. [27] found that a high value of DSC for target 
volumes cannot be used as a predictor for dose coverage. Geometric and 
dosimetric accuracy paradigms, although related, are not equivalent 
[28]. 

Kawula et al. [11] found no statistically significant correlation be
tween geometric and dosimetric metrics showing that both types of 
analysis should be included in the evaluation of auto-contours of OARs 
in radiotherapy. Kawula et al. performed a dosimetric analysis of deep 
learning-based CT auto-segmentation (3D U-NET based on the V-Net 
architecture) for prostate cancer. Dosimetric analysis based on clinically 
relevant DVH parameters of VMAT (volumetric modulated arc therapy) 
plans did not show statistically significant differences for rectum and 
bladder. This is in line with our dosimetric analysis that shows no sta
tistically significant differences in the DVH points of plans for OARs in 
head and neck. Guo et al. [29] studied the dosimetric impact of deep 
learning-based auto-segmentation of OARs in nasopharyngeal and rectal 
cancer. The treatment plan was re-optimised based on the auto-contours 
and then used the manual contours to assess the dosimetric differences 
between the re-optimised and the original plans. The study found no 
strong correlations between the geometric metrics and dosimetric dif
ferences for OARs. 

Conclusion 

To the best of our knowledge this is the first study that includes a 
geometric and a dosimetric analysis of Limbus AI and AI Rad Companion 
autocontours for head and neck. The dosimetric analysis showed that 
there was no statistically-significant difference in the DVH points of 
OARs between the plan re-calculated using the auto-contours and the 
original plan. The results of our geometric analysis are in line with those 
previously published. The auto-contours produced by AI tools are not 
able to completely replace manual contouring by the clinician. There is 
evidence in the literature that suggests that reviewing and editing the 
auto-contours if necessary can save time and resources. 

Table 3 
Dosimetric analysis. Results were expressed as median and range between 
brackets.  

Structure DVH Point Limbus AI (%) AI Rad Comp (%) 

Brainstem Dmax − 4.6 (− 9.1, − 0.1) − 6.9 (− 20.1, 0.2) 
D0.1cc − 4.4 (− 9.6, − 0.1) − 6.1 (− 0.3 − 6.1) 

Cord Dmax − 1.6 (− 5.1, 0.0) − 3.1 (− 5.9, 0.0) 
D0.1cc − 1.9 (− 4.6, − 0.3) − 2.1 (− 5.7, − 1.3) 

Left Parotid Dmean 0.4 (− 0.7, 6.1) 3.2 (0.8, 18.6) 
Right Parotid Dmean 1.6 (− 10.3, 4.3) 6.9 (− 2.0, 10.4)  
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