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a b s t r a c t 

Artificial intelligence and machine learning applications are increasingly prevalent in the healthcare industry. 

In some cases, medical devices use sensor-collected data to feed into algorithms which generate scores or risk 

assessments that are used to inform patient care. The process of determining sensor accuracy requirements which 

will ensure that the algorithm generates reliable scores is not straightforward or well-defined. In this paper, 

we describe a simulation-based method to characterize sensor accuracy requirements for a device that uses a 

machine-learning algorithm to generate a postural stability score – the ZIBRIO Stability Scale. The results of 

the simulation are described, as is the application to sensor selection in preparation for manufacturing of the 

device. Other medical device developers may be able to use this method or similar methods in their requirements 

engineering process. 
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u

ntroduction 

The healthcare industry is increasingly making use of artificial-

ntelligence (AI) or machine learning based methods [1–3] . Multiple

rends are driving this growth, including a shortage of physicians in the

idst of increasing demand for healthcare services [4] , and an increased

ocus on patient-centered care [1] . Artificial-intelligence applications

an help make healthcare more personal, predictive, preventative, and

articipatory [3] , and can enable cost savings for healthcare systems

4] . Popular application areas include machine learning for biomarker

iscovery, autonomous robotic surgery, clinical outcome prediction and

atient monitoring, inferring health status through wearable devices,

nd image-based diagnosis [5] . The most common types of data dis-

ussed in AI literature for healthcare include imaging data, genetic data,

nd electrophysiological data [2] . 

Alongside the benefits that machine learning healthcare applications

romise, they also bring ethical concerns [6–8] . Some of these con-

erns include bias in training data sets, privacy of personal data, lack

f accountability for poor outcomes [6] , and amplification of existing

ealth inequities [7] . In some cases, even “fair ” or “unbiased ” systems

an be inherently unethical [8] . Algorithmic bias is an important con-

ern not only in healthcare, but across all sectors that leverage data-

riven algorithms [9] . Algorithmic bias is “what we experience when a

achine-learning model produces a systematically wrong result ” [10] .
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lgorithms can be morally, statistically, or socially biased [9] , and there

s already plenty of evidence of the occurrence of bias in AI [10] . Be-

ause of the concern of algorithmic bias, the IEEE Global Initiative on

thics of Autonomous and Intelligent Systems is developing a standard

or algorithmic bias considerations [11] . 

Many have discussed the importance of minimizing bias in the data

sed to train algorithms. For example, due to inequality in access to

ealthcare services, training datasets may contain more data of affluent,

verserved patients [12] . However, the literature on bias in healthcare

I has given less attention to another potential source of bias: mea-

urement error in data collected from sensors. In some cases, sensors

hemselves may have inbuilt bias and not work as well for some popu-

ations as for others. For example, racial bias was demonstrated in pulse

ximetry measurement, where readings were more accurate for white

atients than for Black patients [13] . Therefore, any healthcare AI ap-

lication that uses pulse oximetry data as an input should consider the

mpact that this measurement bias will have on the AI application’s out-

uts or recommendations. 

Fig. 1 illustrates a flow that is relevant to many AI applications that

nvolve sensor-collected data. The sensor, which may be embedded in

n imaging device, wearable device, or other medical device, outputs a

easurement, which is then fed into an AI or machine-learning-powered

lgorithm, which produces a result or score that is used to inform patient

are. If initial sensor measurements are inaccurate, how does this impact

he final output from the algorithm, and what is the resulting impact on

he advice or recommendation given to a patient? There is a possibility

hat any error in sensor measurement, due to bias, noise, or another

ource, feeds inaccurate data into an algorithm and reduces the accuracy

f the algorithm’s final output. 
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Fig. 1. Flow of data from sensor to algorithmic output. 

Fig. 2. Reproduced (with permission) from the work by Forth et al. [18] . A) Person stands still on device for 60 s for postural stability assessment. B) During the 

assessment, the person’s body will make small movements, which are captured in COP measurements. C) Plot of COP measurements collected by the scale during 

the postural stability assessment. D) Location of load cell sensors inside the device. 

 

r  

a  

h  

t  

o  

h  

t  

a  

c  

a  

m

 

t  

u  

l  

m  

f  

s

 

w  

s  

o  

&  

s  

t  

p  

t  

l  

T  

r  

0  

p

M

 

a  

e  

f  

e  

t  

4  

w  

i  

#  

1  

2  

T  

a  

B  

b  

t

 

r  

n  

i  

l  

s  

i  

n  

t  

p  

p  

2  
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d  
Fall risk assessment has been a popular focus in recent fall-related

esearch [14] , with important applications in the wellbeing of older

dults [15] as well as in the prevention of occupational falls [16] . Others

ave discussed sensor-based fall risk assessments, including the valida-

ion methods of the assessments [14] , but did not discuss the impact

f sensor accuracy on the accuracy of fallrisk predictions. Others still

ave discussed machine-learning based fall detection and fall preven-

ion methods, covering the types of sensors used and the accuracy of

lgorithmic outputs [15] , but did not address the concern of sensor ac-

uracy and its algorithmic impact. The question of the impact of sensor

ccuracy on sensor or machine-learning -based fall risk assessments re-

ains a gap in the literature. 

This work presents a simulation-based method developed to assess

he impact of sensor noise on algorithmic outputs from a medical device

sed to assess fall risk, the ZIBRIO Stability Scale. Results of the simu-

ations were used to determine sensor measurement accuracy require-

ents for production of the device. While this method was developed

or one specific application, it may be adapted to other devices where

ensor-based signals inform a machine learning algorithm. 

The ZIBRIO Stability Scale (formerly called the ZIBRIO SmartScale)

as designed to provide an accessible method of measuring human

tanding balance and postural stability through the study of postur-

graphy [17] . The Stability Scale uses the Briocore algorithm (Forth

 Lieberman-Aiden, 2019) to calculate postural stability scores (PS

cores), which are reported as integers ranging from 1 (worst balance)

o 10 Brios (best balance). The Briocore algorithm uses 60 s of center-of-

ressure (COP) data (3600 samples) collected during a postural stability

est to calculate the PS score. The COP data is collected through four

oad cell sensors that are located at the corners of the device platform.

he device is illustrated in Fig. 2 [18] . In a previous study, the accu-

acy of the Stability Scale’s COP measurements was found to be within

.5 mm of measures taken from a “gold-standard ” laboratory force

late [17] . 
2 
aterials and methods 

A pool of 30 postural stability test datasets was compiled for the

nalysis. The pool was comprised of 3 randomly selected datasets for

ach PS score (1 to 10 Brios, inclusive). All datasets were gathered

rom a database of postural stability tests of human subjects, with the

xception of the scores of 10 Brios, which were produced by running

he postural stability assessment with a static calibration load (mass of

5.5 kg) placed atop the Stability Scale. Datasets from human subjects

ere collected in the study described in Forth et al. 2020 [18] (exper-

mental protocol was approved by the Westerns IRB (#20171926 and

20172324) and the University of Texas Health Science IRB (HSC-MS-

6–0019)). During testing, one human subject’s data set which scored

 Brios was observed to be more sensitive to sensor noise than others.

o better capture the observed variability, two additional data sets were

dded to the pool of “2 Brios ” scores. All five datasets with scores of 2

rios were included in the analysis to account for variability captured

y the unexpected result, bringing the total number of datasets analyzed

o 32. 

To evaluate the impact of sensor noise on PS score calculation, we

an a series of simulations in which increasing levels of random sensor

oise, or “perturbations, ” were iteratively added to COP measurements

n each test dataset. Forty levels of perturbation magnitude were se-

ected, ranging from 0.25 mm to 10 mm in increments of 0.25 mm. A

ingle dataset contains 3600 COP measurements. For each COP sample

n a dataset, a perturbation was randomly selected within each mag-

itude range (e.g. between − 0.25 and + 0.25 mm) and was added to

he x component (COPx), y component (COPy), or both x and y com-

onents. The perturbations were performed in four different conditions:

erturbing COPx only (Condition 1), perturbing COPy only (Condition

), perturbing COPx and COPy by the same amount (Condition 3), and

erturbing COPx and COPy by different amounts (Condition 4). The con-

itions are depicted visually in Fig. 3 . All perturbation calculations and
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Fig. 3. Visualization of PS score perturbation process compared to base PS score calculation process ( “No Perturbation ” condition). 

Fig. 4. Percent agreement between base PS score and perturbed PS score. 
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he evaluation of their impact upon the PS scores were performed in

atlab v. R2017a (The Math Works Inc. 2017). 

An example process for perturbation of a dataset was as follows: A

ataset was imported into Matlab and the COPx and COPy trajectories

ere calculated from the raw load cell sensor data. For “Condition 1 ″

COPx only), for the perturbation magnitude of 0.25 mm, a random

umber between − 0.25 and 0.25 was added to each COPx value in the

ataset (3600 samples). This produced a new set of COP values, with the

OPx values “perturbed ” and the COPy values unchanged. The Briocore

lgorithm was then applied to this modified set of COP values to produce

 new PS score. This process was then repeated for the other 39 pertur-

ation magnitudes; therefore, 40 different output PS scores were gener-

ted for each level of added noise. This process was repeated among the

ther three perturbation conditions. 

Once this was complete, each initial dataset had been perturbed at

0 noise magnitudes under four conditions, resulting in a total of 160

istinct simulations. Each simulation was repeated 1000 times to char-

cterize the behavior of the perturbed score outcome at each perturba-

ion range. Since random noise was added during each simulation, the

esults of each trial were expected to vary slightly (Monte Carlo simula-

ion) and produce a distribution of results. The 160 distinct simulations

ere performed 1000 times on each of the 32 balance test data sets. 

The new PS scores resulting from the simulations were compared

ith the base PS score, which was the result of the Briocore algorithm

alculation on the original, unperturbed dataset. Out of all the pertur-

ation conditions, Condition 4, perturbing COPx and COPy by different

alues, was found to have the largest impact on PS score outcomes.
3 
his analysis was prioritized as the worst-case scenario noise profile.

n the presented results, 32 initial postural stability test datasets were

erturbed in COPx and COPy by different values at each of the 40 per-

urbation magnitudes 1000 times. To quantify the impact of noise upon

S score, the percent agreement between perturbed PS score and the

ase PS score across the 1000 trials was calculated at each perturbation

agnitude. In cases of disagreement, the directionality of disagreement

etween the perturbed and base score (whether the PS score was overes-

imated or underestimated relative to the base score) was also assessed.

In practice, an incorrectly high PS score would overestimate an indi-

idual’s postural stability, while a lower PS score would underestimate

ostural stability. The PS score has been associated with a fall risk pre-

iction [18] , and from a conservative standpoint, overestimating fall

isk is preferred. Wrongfully overestimating postural stability was con-

idered to represent unacceptable PS score sensitivity to sensor measure-

ent error, therefore the percentage of overestimated PS scores was also

alculated at each perturbation level. 

esults 

A perturbation magnitude of + /- 3 mm was selected as the highest ac-

eptable error level in the COP measurements. At + /- 3 mm of error, the

verage agreement between the base PS score and the perturbed PS score

as 79.01 + / − 17% ( Fig. 4 ). In general, agreement between the base PS

core and perturbed PS scores decreased as the perturbation magnitude

ncreased. At perturbations magnitudes below + /- 3 mm, score agree-

ent was at or above 80%, and agreement steadily decreased to 20%



K.A. Bartlett, K.E. Forth and S.I. Madansingh IPEM-Translation 1 (2022) 100004 

Fig. 5. Rate of overestimating PS score. 
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t + /- 10 mm perturbation magnitude. At + /- 3 mm, the percentage of

erturbed PS scores that was either equal or lesser to the base PS score

as 95.54 + / − 8% ( Fig. 5 ). As a general rule, the outcome of the sim-

lations showed that the errors in sensor measurement would serve to

ause an underestimation of PS score about 95% of the time, even in

ases where greater than + /- 3 mm of error was simulated. 

Two additional datasets were included to evaluate the sensitivity of

 PS score of “2 Brios ” after one of the three randomly selected datasets,

dataset 2C ”, responded to perturbations in a manner that was incon-

istent with simulations. For example, the percent agreement between

ase and perturbed score at + /- 0.25 mm (lowest perturbation magni-

ude) was 46% at where all other simulations had percent agreements

f approximately 100% at the same level The two additional datasets

ollowed the expected pattern near 100% agreement at the lowest per-

urbation magnitude, however, all five datasets ” were included in the

nal analysis. Investigation into dataset 2C revealed that the unrounded

S score equalled 2.4666, representing a unique case, highly susceptible

o having the rounding direction changed if the score increased by as

ittle as 0.0334 points. 

iscussion 

In light of the increasing number of medical devices that generate

lgorithm-based scores, it is important for device manufacturers to en-

ure that the sensors used in such devices have adequate resolution so

s to not compromise the accuracy of the algorithm’s outputs. Medical

ensors are sometimes used to generate an output in the same unit of

easure as what is reported on the specification sheet from the manu-

acturer. For example, a load cell used in a weighing scale application

ill have a known weight accuracy resolution, which can inform the

esulting accuracy of the overall weight scale in a relatively straight-

orward manner. However, when sensor measurements are being used

s input for an algorithmic score, the impact of the sensor accuracy on

he final score output is not as straightforward. In order to address this

roblem, we devised a method to simulate sensor noise at varying lev-

ls and evaluate how this would affect the resulting algorithmic score

utput. 

Based on the results of our simulations, + /- 3 mm was selected as

he tolerable error for COP measurements in the ZIBRIO Stability Scale

evice. The rationale for this selection was a balance of several factors:

rstly, to ensure a high level of stringency in the accuracy of the PS

core; secondly, to ensure a large margin for error relative to the mea-
4 
ured MAE, as + /- 3 mm is approximately 5x the MAE when compared

ith a laboratory force plate [17] . At + /- 3 mm perturbation magnitude,

5.54% of the simulated PS scores were either equal to or lower than

he original base score, providing confidence that a user will receive

 representative and nominally conservative estimate of their fall risk.

pproximately 80% of the perturbed PS scores (79.01%) were equiva-

ent to the base PS score at this level of noise, therefore, + /- 3 mm was

etermined to be an acceptable requirement. 

From an engineering standpoint, + /- 3 mm accuracy is possible to

chieve with small, lightweight, low-cost sensors which could be used

n the production of our small, portable posturography devices. In test-

ng, both the current generation and previous generation of Stability

cale prototypes had maximum absolute error below the + /- 3 mm re-

uirement (when compared to a gold standard laboratory force plate),

nd can be considered adequate in calculating COP for the purposes of

ssessing postural stability through the Briocore algorithm. 

In terms of sensor performance, realizing an error of + /- 3 mm during

OP measurement is estimated to require approximately 1.1 kg of load

o be erroneously captured (0.28 kg at each sensor) in each direction

x and y). This is well outside the expected error limits of the low-cost

0 kg GML671 load cells which are used in the device; the load cells

ave a comprehensive error rate of 0.1% of full scale (approximately

.05 kg). Using the COP equation described in Bartlett et al. 2019 [17] ,

 mm of error in the x or y direction, when measuring a 65 kg load

637.43 N), would represent 1.09 kg of measurement error across all 4

ensors, or 0.27 kg of measurement error in a single sensor. 

Although the results of our analysis suggest that the sensors in the

th generation Stability Scale are adequate to achieve the desired mea-

urement accuracy and noise tolerance, it is important to note the fol-

owing limitations. The analysis was performed on a test pool of only

2 postural stability tests. The simulations run during algorithm sensi-

ivity analyses were intended to account for unexpected changes to COP

easurement accuracy, which could arise from mechanical issues, elec-

rical noise, or sensor flaws or damage. However, this simulation method

id not capture the likelihood of incorrectly calculating or reporting PS

cores due to software issues. Therefore, further software verification

ctivities would be needed to ensure PS score accuracy during regular

se. 

When medical sensors are used to generate algorithmic scores or out-

uts, sensor accuracy requirements are not always straightforward. Sen-

ors are unlikely to give perfect readings at all times when used in real-

orld conditions, and device manufacturers must determine acceptable
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pecifications for sensor accuracy. Here we have described a simulation-

ased method to determine such accuracy requirements in light of the

esulting impact on algorithmic score outputs. While we have described

 replicable method to determine how sensor inaccuracy will impact

lgorithmic score outputs, resulting judgements for sensor accuracy tol-

rance will vary in other applications. In medical device applications,

anufacturers must determine sensor accuracy requirements based on

he clinical and ethical implications, paying special attention to the con-

equences of incorrect predictions upon patient care. Clear evaluations

f algorithm noise susceptibility will be necessary for future adoption of

lgorithm-derived healthcare insights. 
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